
Information Retrieval
WS 2018 / 2019

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 1, Tuesday October 16th, 2018
(Introduction, Inverted Index, Zipf's Law)

Overview of this lecture

 Organizational
– Contents of this course demos + list of topics

– Organization and style lectures, exercises, tutorials

– Credits ECTS points + exam info

– Coding Standards valid throughout the course

 Contents
– Keyword Search inverted index, Zipf's law

– ES1: implement keyword search using an inverted
index on a collection of ca. 200K movie descriptions

2

Contents of this Course 1/2

 Three demos for starters M = million, B = billion

– CompleteSearch Search As You Type

Data: over 3M publication records from computer science

Features: suggestions, facets, lightning fast

– Broccoli/QLever Semantic Search

Data: Freebase (1.9B facts) + ClueWeb (1.5B sentences)

Features: search in triples+ text, suggestions, fast

– Aqqu Question Answering

Data: Freebase (1.9B facts)

Features: free-form natural language questions

3

Contents of this Course 2/2

 Research topics behind the demo you just saw

– Indexing needed for fast query times

– Ranking most relevant hits should come first

– Compression lots of data, store it efficiently

– Error-tolerant search errors in query or document

– Web app stuff JavaScript, AJAX, Cookies, UTF-8

– Machine learning when fixed rule-based approaches fail

– Knowledge bases how to organize structured data

– Evaluation argue that one system is better than another

You will learn about all that (and more) in this course
4

Organization and Style 1/6

 Organization of the lectures

– Different this semester: for the remaining lectures, the
recordings from the WS 17/18 will be used

Reason: I became dean of the faculty on October 1 and
the amount of work in the first months is simply immense

– There will be the usual live support for the exercise sheets

Corrections, support on the forum, question times, …

– You find all the course materials on our Wiki

Recordings, slides, code from the lecture, exercise sheets +
specifications + design suggestions, master solutions, …

Also in the SVN, subfolder /public (except for the recordings)

5

Organization and Style 2/6

 Organization of the exercises

– One sheet per week, altogether 13 sheets

The exercises are the most important part of the course
… and we make a strong effort to design them properly !

– You have one week per sheet

Until 2 hours before the next lecture = Tuesday 12:00 h

– You can work in groups of at most two people

If you want to work in a group, send an email to Axel
Lehmann (lehmann@cs.uni-freiburg.de) with the name
of your RZ accounts (initials + short number) and your
desired partner in the Cc (to make sure they agree)

Axel will then create a joint folder in our SVN for you
6

Organization and Style 3/6

 Organization of the tutorials

– There is a forum for questions of all kinds

See the instructions on the back of Exercise Sheet 1

Response times on the forum are fast, usually I
or the assistant or one of the tutors will answer

Assistant for this course: Claudius Korzen

– You will receive feedback for each of your exercise sheets

Usually by Friday after the submission deadline

You will find the feedback in a file feedback-tutor.txt
in your subfolder for the respective ES in our SVN

7

Organization and Style 4/6

 Style of the lectures

– I will provide: motivation, definitions, examples, live code

The emphasis is on the basic ideas + intuition

Working out the details is your job in the exercises

– Underlying theory wherever needed

No theory for the sake of theory in this course

– One topic per lecture + self contained

We provide all the materials you need for the sheets and
the exam … the literature pointers at the end are optional

8

Organization and Style 5/6

 Style of the exercises

– Your task: understand the basic idea + implement it

Implementation is great, because it makes you understand
all the important details + a working implementation is
proof that you did understand it

– Practically relevant tasks + real data + own experiments

Usually the best motivation to work on something

By doing experiments yourself, you will also get a feeling of
what research in this area is like

– Some theoretical tasks, wherever meaningful

9

Organization and Style 6/6

 Master solutions

– After the deadline for each sheet, the master solutions for
this sheet will be published

On the Wiki and in the SVN under /solutions

– Important: these master solutions are strictly for your
personal use only

– Under no circumstances may you pass them on to others
or let others access them from your machine

Not now and especially not in the future

10

Credits 1/3

 Amount of Work / ECTS points

– This course yields 6 ECTS points = costs 180 working hours

Lectures (≈ 30 hours) + exercise sheets + exam preparation

– Time management options … ES = Exercise Sheet

A. 7-9 hours per ES, little exam prep. RECOMMENDED

B. 5-6 hours per ES, more exam prep. MINIMUM

C. 0 hours per ES, xxx exam prep. IMPOSSIBLE

Doing all the exercise sheets and understanding everything
behind them is the perfect preparation for the exam

11

Credits 2/3

 Exam

– There is an exam in the end, date will be fixed next year

B.Sc. Informatik students (old PO only): oral exam

All other students (non-negotiable): written exam

– You need 50% of the points from the exercises
to be admitted to the exam

This is no problem, if you actively follow the course

– There will be six tasks, out of which you can choose five

See exams from last years on the Wiki

– More information about the exam in the last lecture

We will look at some typical tasks + solve them together
12

PO = Prüfungsordnung
Note: conditions for switching
to the new PO not clear yet

Credits 3/3

 Plagiarism

– Plagiarism = copying code, also partly, from somewhere
else, without clearly specifying from where you copied what

It's extremely bad practice and you should not do it, period

– If we find out that you did this, you risk one of the following:

Zero points for that particular exercise sheet

Negative points for that particular exercise sheet

An entry "Täuschungsversuch" in the HISinOne

13

Keyword Search 1/10

 Problem definition

– Given a collection of text documents ... e.g. the web

For ES1: 189,897 movie descriptions

– Given a keyword query ... e.g. astronauts moon

For ES1: any number of keywords

– Return all documents that contain all the keywords

For the exercise sheet: return at most three such
documents, the selection is arbitrary

In Lecture 2, we will also consider returning documents
that contain only some of the keywords

14

Keyword Search 2/10

 Issues / Refinements

– Ordering / ranking of the results Lecture 2

– Fast query processing Lecture 3

– Space consumption Lecture 4

– Find variations of the keywords Lecture 5

– Search web application Lecture 6

– More web stuff + UTF-8 Lecture 7

– Synonyms Lecture 8

Today (Lecture 1), we start by doing the minimum
that is necessary to get a first workable solution

15

Keyword Search 3/10

 Naive solution

– Given a keyword query, iterate over all the documents,
and identify those that match

Similar to what the Unix/Linux grep command does

– Actually not so bad even for medium-sized text collections

A modern computer can scan through 1 GB of text
in a fraction of a second

But already for 100 GB it would be a fraction of a minute

– Current web: ≈ 50 billion pages / 2500 TB of text

Source: www.worldwidewebsize.com ... assuming 50 KB / page

16

Keyword Search 4/10

 Inverted index

– For each word, pre-compute and store the sorted list
of ids of documents / records containing that word

astronauts 13, 57, 61, 114, 987, ...

moon 5, 23, 57, 63, 114, 257, ...

– These lists are called inverted lists

For Exercise Sheet 1, each inverted list may contain a
particular record id at most once, even if the record
contains the word multiple times

Alternative: store pairs of (record id, count) … we will
explore this further in Lecture 2

17

Keyword Search 5/10

 Query processing, one keyword

– The inverted list for that keyword already gives us what
we want (all records containing that keyword)

astronauts 13, 57, 61, 114, 987, ...

18

Keyword Search 6/10

 Query processing, two keywords

– Let L1 and L2 be the inverted lists of the two keywords

– We obtain the sorted list of ids for the matches of both
of the two keywords by intersecting L1 and L2

– For sorted lists, this can be done in linear time

astronauts 13, 57, 61, 114, 987, ...

moon 5, 23, 57, 63, 114, 257, ...

– The same principle can be used for merging the two lists =
computing the ids of matches for any of the two keywords

We will explore this further in Lecture 2
19

Keyword Search 7/10

 Query processing, k > 2 keywords

– Let L1 , L2 , …, Lk be the inverted lists of the keywords

– We can do a sequence of pairwise intersects (or merges):

Intersect L1 and L2 L12

Intersect L12 and L3 L123 … and so on

– Possible optimizations (not needed for the exercise sheet)

Order the lists such that |L1| ≤ |L2| ≤ … ≤ |Lk|

Then the lengths of intermediate results is minimized

K-way intersect/merge of the lists in time O(k · ∑i |Li|)

More about this in a later lecture

20

Keyword Search 8/10

 Breaking the text into words (tokenization)

– Conceptually simple: just define a set of characters that
belong to words and a set of characters that don't

Words are then maximal sequences of word characters

For Exercise Sheet 1, you can simply consider a-z and
A-Z as word characters, all others as separators

– In reality it's a bit more complicated:

初しぐれ猿も小蓑をほしげ也はつしぐれさるもこみのをほしげなり

Semestereröffnungspartyorganisationskomiteevorsitzende

Ã–sterreichische GemÃ¼sebrÃ¼he mit KnÃ¶deln^M

More about UTF-8 and language stuff in Lecture 7
21

Keyword Search 9/10

 Construction of an inverted index

– Store in a map from strings (words) to arrays of ints (ids)

– Construction algorithm:

Iterate over all records, keeping track of the record id

For each record, iterate over all the contained words

For each word occurrence, add id of current record
to respective inverted list (create it, if new word)

– Let's code this together now !

For Exercise Sheet 1, take care that you add each record
id at most once to the same inverted list … and make
sure that your code still runs in linear time !!!

22

Keyword Search 10/10

 Zipf's Law

– Let Fn be the frequency of the n-th most frequent word

Frequency = total number of occurrences in all records

– Let us plot n on the x-axis and Fn on the y-axis

Observation: looks like a hyperbola

– It turns out that Fn ~ 1 / nα for some constant α

Empirical observation, true for most texts and languages

After George Kingsley Zipf, 1902 – 1950, American linguist

– Note: Fn = C · n–α is equiv. to log Fn = – α	· log n + log C

We should hence see a (falling) line in the log-log plot

23

Coding Standards 1/3

 Quick overview

– Write your code in Python, Java or C++

I will often (but not always) use Python in the lectures

– Follow the specifications in the TIP file, if available

– Follow our coding conventions at all times:

At least one non-trivial unit test for each non-trivial method,
and if test cases are provided, you must implement them all

The contents of the test case is important, not the exact syntax

Adhere to our coding style + document each method

Use a standard build/make file + make sure everything
runs through without errors on Jenkins … see next slide

You find a detailed description on Exercise Sheet 1 …
read it carefully, this is valid throughout the course

24

For a few sheets about efficiency,
Python will be forbidden

For some sheets using linear algebra,
Python will be strongly recommended

Coding Standards 2/3

 Jenkins

– Jenkins is our build system, where you can verify that
the code uploaded to our SVN indeed compiles and
passes all tests and has zero checkstyle errors

Submissions that do not pass Jenkins without errors will
not be graded (= receive zero points)

– This may sound strict, but is actually quite reasonable:

Code that does not even compile, fails basic tests, or is
badly formatted is a pain to correct for the tutors

Enforcing minimum standards is standard procedure,
e.g. when submitting articles to a conference

You have enough time + you can ask on the forum
25

Coding Standards 3/3

 Daphne

– You find the links to all the relevant information and
systems on your Daphne page

Just log in with your regular RZ account and password
(your initials + a short number)

26

References

 Text book

Introduction to Information Retrieval

C. Manning, P. Raghavan, H. Schütze

Available online under http://www.informationretrieval.org

Good, up-to-date, comprehensive information on the basics

 Wikipedia articles relevant for this lecture

http://en.wikipedia.org/wiki/Inverted_index

http://en.wikipedia.org/wiki/Zipf's_law

Wikipedia articles on basic algorithms stuff are quite good

However: still no good article on intersecting/merging lists !

27

