
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 13, Tuesday January 31st, 2017
(Knowledge Bases, SPARQL, Translation to SQL)

Overview of this lecture

 Organizational
– Your experiences with ES12 linear classification proof

 Content
– Knowledge bases + SPARQL explanation + examples

– Databases + SQL explanation + examples

– SQLite a lightweight database

– SPARQL to SQL algorithm + example

– Performance joins and join order

– ES13: Implement SPARQL  SQL translation and
use to process SPARQL queries with Python+SQLite

2

Experiences with ES12 1/3

 Summary / excerpts
– Most of you found the exercise sheet quite easy

"This was the shortest ex. sheet anyone ever gave to me"

– In particular, the hint provided was quite extensive

– Some of you doubted whether you understood it correctly,
because it went so relatively easily

"It was so easy that we felt unchallenged and didn't solve it"

– For some it was still tricky because they don't like proofs

"I'm not that good in proving things in a formal way"

– Almost everybody participated in the evaluation!

3

Experiences with ES12 2/3

 Electromagnetic waves, wavelengths and characteristics

– γ-rays < 10pm decay of atomic nuclei

– X-rays 10pm .. 10nm braking radiation fr. electrons

– Ultraviolet 10nm .. 400nm 5% of sunlight (energy-wise)

– Visible 400nm..700nm 45% of sunlight

– Infrared 700nm .. 1mm thermal radiation, 50% of sun

– Microwave 1mm .. 1m line-of-sight, narrow beams

– Radio waves 1m .. 100km broadcasting, ground waves

– Atmosphere absorbs γ- and X-rays, and most of UV and infrared

Main absorbers: water vapor, carbon dioxide, ozone

Note: lower wavelength  higher frequency  more energy
4

Experiences with ES12 3/3

 Electromagnetic waves
– So, in a nutshell, our "visible range" is more or less that part

of the sunlight, which is not filtered by the atmosphere

– Understand that what we "see" is actually just "reflection data"
(of electromagnetic waves from the 400nm..700nm range)

It is as weird, as if we could see WiFi  question on ES13

– Some animals can also see (low wavelength) infrared

For example, they can then also "see" temperature directly

However, water is a strong absorber of (low wavelength)
infrared, so you can't use a biological organ like the eye

5

Knowledge Bases and SPARQL 1/7

 What is a knowledge base
– A knowledge base is a database of statements about

entities and their relations

Critical: unique identifiers for each entity and relation

– A common format / schema is to express all statements
as subject predicate object triples:

Brad Pitt acted in Mr. and Mrs. Smith
Brad Pitt acted in Burn After Reading
Angelina Jolie acted in Mr. and Mrs. Smith
Joel Cohen directed Burn After Reading
Ethan Cohen directed Burn After Reading
Brad Pitt married to Angelina Jolie

6

Knowledge Bases and SPARQL 2/7

 Freebase and WikiData
– Freebase is the largest open general-purpose KB to date

Started by Metaweb in 2007, acquired by Google in 2010

Current size: ≈3 billion triples on ≈60 million entities

Freebase has become read-only in March 2015 and most of
its data will eventually be merged into WikiData

– WikiData is the soon-to-become largest open general-
purpose knowledge base to data

WikiData is the "Wikipedia" among the knowledge bases

Current size: ≈135 million triples on ≈25 million entities

7

Knowledge Bases and SPARQL 3/7

 Reification
– Restriction to triples is no real restriction: n-ary

relationships can also be represented as triples:

m/0jy6xg film Finding Nemo
m/0jy6xg actor Ellen DeGeneres
m/0jy6xg character Dory
m/0jy6xg type Voice

m/0jy6xg is an entity name from Freebase

In the example above, it's a so-called mediator, which
serves as a link between the entities it connects

The dataset for ES13 has no mediators

8

Knowledge Bases and SPARQL 4/7

 Relation to the "Semantic Web"
– The Semantic Web initiative is concerned with making

knowledge base data explicitly available on the web

Variant 1: semantic mark-up in normal web pages

Typical format: Microdata or JSON-LD

Variant 2: web pages containing only structured data

Typical format: RDF

– No rules that enforce consistent entity or relation names

The hope is that people adhere to standards nevertheless,
and that machines can resolve the remaining heterogeneity

Anyway: this is not the topic of this lecture / course
9

Knowledge Bases and SPARQL 5/7

 What is SPARQL
– The standard query language for knowledge bases

SPARQL = SPARQL Protocol And RDF Query Language

– Example query in natural language: actors who are
married and played together in at least one movie

– The same query expressed in (simplified) SPARQL

SELECT ?person1 ?person2 ?film WHERE {
?person1 acted_in ?film .
?person2 acted_in ?film .
?person1 married_to ?person2

}

10

Knowledge Bases and SPARQL 6/7

 SPARQL syntax
– In the lecture today, we use a simplified syntax

In "real" SPARQL, names of subjects / predicates / objects
may contain whitespace and are surrounded by <…>

– The actual SPARQL syntax is slightly more complicated and
has many more features

In particular, it involves namespace prefixes, so that
names can be made globally unambiguous

See the Wikipedia page or the W3C specification if you are
interested

Not relevant for our lecture today

11

Knowledge Bases and SPARQL 7/7

 SPARQL queries as subgraphs
– One can view a knowledge base as a graph, where the

nodes are the entities, and the edges are the relations

– A SPARQL query is then a sub-graph with variables at
some or all of the nodes

– Solving the query then amounts to finding all matches of
the subgraph in the (large) knowledge base graph

12

Databases and SQL 1/4

 Introduction
– Data from a knowledge base can also be stored in an

ordinary database

This is also what we do in the lecture and for ES13

– The standard query language for databases is SQL

SQL = Structured Query Language

– On the following slides, let us recap the basics from
databases and SQL via a few examples

13

Databases and SQL 2/4

 What is a database
– For this lecture, a database is a collection of tables,

where each table has a fixed number of columns

– For example, we could have one table for each predicate
from our knowledge base, with two columns each

14

Table for "acted in" predicate

actor film
Brad Pitt Burn after Reading
Angelina Jolie Mr. and Mrs. Smith
… …

Table for "married to" predicate

person1 person2
Brad Pitt Angelina Jolie
Ellen DeGeneres Portia de Rossi
… …

For ES13, you should work with one table (for the whole
database) with three columns (subject, predicate, object)

Databases and SQL 3/4

 SQL example 1
– Example query FROM one table

SELECT actor
FROM acted_in
WHERE film = "Burn After Reading";

In words: all actors from movie "Burn After Reading"

Principle: select those rows from the specified table
which satisfy properties specified in WHERE clause

15

Databases and SQL 4/4

 SQL example 2
– Example query FROM multiple tables

SELECT married_to.person1, married_to.person2
FROM married_to, acted_in AS acted1, acted_in AS acted2
WHERE married_to.person1 = acted1.actor
AND married_to.person2 = acted2.actor
AND acted1.film = acted2.film;

In words: all couples which acted in the same movie

– Principle: selects items from cross-product T1 × ∙∙∙ × Tk
which satisfy properties specified in WHERE clause

– Syntax: us AS for unique names of copies of same table;
use table.column to refer to that column from that table

16

SQLite 1/4

 A full-fledged database, easy to install and use
– On Debian/Ubuntu install with: sudo apt-get install sqlite3

– Two types of commands … examples on next slides

SQL commands: must end with a semicolon

SQLite commands: start with a dot, no semicolon at end

– Two modes to start SQLite:

sqlite3 will work on an in-memory database

sqlite3 <name>.db create database in that file, and if file
exists, use database from that file

Let's read our example tables in SQLite using the
commands from the next two slides … it's easy

17

SQLite 2/4

 Some useful SQLite commands by example
– Specifies the column separator used for input and output

.separator " " use Ctrl+V TAB for TAB !

– Read table from TSV (tab-separated values) file

.import film.tsv film

– Execute commands from script file (typical suffix is .sql)

.read <file with commands>

– Show execution time of every command

.timer on

18

SQLite 3/4

 Some useful SQL commands by example
– Create a table with a given schema

CREATE TABLE acted_in(actor TEXT, film TEXT);

– Create an index for a column of a table

CREATE INDEX acted_in_index ON acted_in(actor);

– Extract / combine data from tables

SELECT * FROM acted_in WHERE … LIMIT 100;

– Delete table / index (without error msg if it's not there)

DROP TABLE IF EXISTS acted_in;

DROP INDEX IF EXISTS acted_in_index;

19

SQLite 4/4

 Python interface to SQLite
– Executing SQL commands to a SQLite database from

within Python is very easy:

import sqlite3
db = sqlite3.connect("example.db")
cursor = db.cursor()
cursor.execute("SELECT * FROM table")
for row in cursor.fetchall():

print("\t".join(row))

Beware: the SQLite commands (starting with a dot) cannot
be executed from within Python, you need SQLite for those

20

SPARQL to SQL Translation 1/4

 Motivation
– We want to translate a given SPARQL query to a SQL

query that gives the desired results on a given database

– In the following example, we use one table per relation

CREATE TABLE acted_in(actor TEXT, film TEXT)
CREATE TABLE married_to(person1 TEXT, person2 TEXT)

Note: all elements from one table are from one relation,
so we don't need to store the relation name in the table

For ES13, use one big table for all the data, with
three columns named subject, predicate, object

This is deliberately different from how we did it in the
lecture, so that you have to do some thinking yourself

21

SPARQL to SQL Translation 2/4

 Example
– SPARQL query

SELECT ?p1 ?p2 ?f WHERE {
?p1 acted_in ?f .
?p2 acted_in ?f .
?p1 married_to ?p2 }

– SQL query:

SELECT
FROM
WHERE

22

SPARQL to SQL Translation 3/4

 Algorithm
– It is up to you in ES13, to design a generic algorithm

that works for arbitrary basic SPARQL queries

Of the form SELECT <vars> { <triples> }

– The algorithm is not difficult, but requires understanding
of how the data is stored and how SPARQL and SQL work

So perfect exercise to understand the basics !

– On the next slide we give you some valuable advice

23

SPARQL to SQL Translation 4/4

 Algorithm, advice for ES13
– If there are k query triples in the SPARQL query, have k

entries in the FROM clause of the SQL query

FROM freebase as f1, freebase as f2, ... , freebase as fk

– In your code, for each variable from the SPARQL query,
build an array of all its occurrences in the query, e.g.

?x: f1.subject, f2.object, f5.object

– Then, when building the SQL query, add the corresponding
equalities to the WHERE clause, e.g.

WHERE f1.subject = f2.object AND f2.object = f5.object

Note: if ?x occurs m times, m – 1 equalities are enough

24

Performance 1/4

 Cross product of tables
– Recall that, conceptually, an SQL statement like

SELECT … FROM T1, T2, …, Tk WHERE …

selects elements from the cross-product

T1 × ∙∙∙ × Tk (which has |T1| ∙ ∙∙∙ ∙ |Tk| elements)

(where some or all of the Ti can be the same table)

25

Performance 2/4

 Joining of tables
– Each … = … in the WHERE clause effectively ask for

a JOIN operation between two tables

– Algorithmically, a JOIN requires a list intersection

– If we CREATE an index for the respective tables on the
respective join attributes, this list intersection gets fast

E.g., by sorting (a copy of) the table by that attribute

26

Performance 3/4

 Join ordering
– Typical SQL-from-SPARQL queries require multiple joins

– Order of joins can make a huge performance difference

– For our example query, the acted_in table (actors – films)
is more than ten times larger than the married_to table

– Join order 1: look at all pairs of actors who played in the
same film, and for each check whether they are married

materialized all pairs of actors from same film (large)

– Join order 2: look at all married couples and for each get
their films and check whether they overlap

materializes list of films of all married people (small)

27

Performance 4/4

 Join ordering, continued
– Without further ado, SQLite seems to take the order of the

tables in the FROM clause as its join order

SELECT married_to.person1, married_to.person2
FROM acted_in as acted1, acted_in as acted2, married_to
WHERE married_to.person1 = film1.actor
AND married_to.person2 = film2.actor
AND acted1.film = acted2.film;

Alternatives: (note that there are 6 possible orderings)

FROM married_to, acted_in as acted1, acted_in as acted2

FROM married_to, acted_in as acted2, acted_in as acted1

28

References

 Textbook
– Nothing about this topic in the text book by Manning,

Raghavan, and Schütze

 Wikipedia
– http://en.wikipedia.org/wiki/Knowledge_base

– http://en.wikipedia.org/wiki/SPARQL

– http://en.wikipedia.org/wiki/SQL

– http://en.wikipedia.org/wiki/SQLite

– http://en.wikipedia.org/wiki/Freebase

29

