
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 12, Tuesday January 24th, 2017
(Linear Classifiers, Perceptrons)

Overview of this lecture

 Organizational
– Experiences with ES 10 Naïve Bayes

– Online evaluation for this course until January 29

 Contents
– Linear classifiers definition

– Naïve Bayes (again) is a linear classifier

– Perceptrons another linear classifier

– ES12: prove that Naïve Bayes is a linear classifier

2

Experiences with ES11 1/2

 Results
– Overall precision: 73% on genres, 65% on ratings

– Works well for some classes, not so well for others

Quite well: Documentary (F1 = 86%), G-Rating (F1 = 79%)

Not so well: Science Fiction (F1 = 46%), PG-13 (F1 = 38%)

– Words with largest pwc are mostly stopwords:

Comedy: the and a film by is of in directed comedy was to ...

R: the and a film by is of in was … horror … thriller

However: they don't really hurt, because they occur for all
classes … indeed, removing them change results only little

3

Experiences with ES11 2/2

 Which precision is considered "good" ?
– Baseline 1: guess label uniformly at random

Overall precision: 20% for genres, 25% for ratings

Pr(label predicted correctly) = 1 / #classes

– Baseline 2: always pick label most frequent in training set

Overall precision: 41% for genres, 51% for ratings

Works quite well when one class is very frequent

– Baseline 3: pick label c with probability pc = |Tc| / |T|

This is not better than Baseline 2, and generally worse

Think about why … this might be an exam question

4

Official course evaluation

 Instructions
– You should have received an email from EvaSys Admin

on Monday, January 16 with a link to an evaluation form

– We are very interested in your feedback

– Please take your time for this

– Please be honest and concrete

– The free text comments are most interesting for us

Please complete by Sunday, January 29

The evaluation is centralized, and will be closed after
that date, and there is nothing we can do about that

5

Linear Classifiers 1/6

 Framework
– Objects are (as usual now) vectors in d dimensions

– Exactly two classes … often denoted +1 and –1

See slide 10 for how to generalize to more classes

– A linear classifier tries to separate the data points by a
(d-1)-dimensional hyperplane, as defined on next slide

For d=2 this means: try to separate by a straight line

Note that the points may not be fully separable

– Predictions are made based on which side of the
hyperplane (for d=2: straight line) the object lies on

6

Linear Classifiers 2/6

 Hyperplane, definitions
– Two common ways to define a hyperplane H in Rd

The two definitions are equivalent … proof on next slide

– Definition 1 (by anchor point and basis):

There is an anchor point a ϵ Rd and pairwise orthogonal
h1, …, hd-1 ϵ Rd such that H consists of all linear combinat.
a + Σi αi hi for arbitrary α1, …, αd-1 ϵ R

– Definition 2 (by normal vector and offset):

There is a normal vector w ϵ Rd and an offset b ϵ R such
that H consists of all points x ϵ Rd with w ● x = b

7

Linear Classifiers 3/6

 Hyperplane, equivalence of these definitions
– For the proof we use that for any pairwise orthogonal

x1, …, xk ϵ Rd, we can find xk+1, …, xd ϵ Rd such that
x1, …, xd are pairwise orthogonal

8

Linear Classifiers 4/6

 Distance from a point to a hyperplane
– Let H = { x ϵ Rd : w ● x = b } be a hyperplane in Rd

– Then the distance of a point x ϵ Rd to H is |w ● x – b| / |w|

– The sign of w ● x – b says on which side of H lies x

9

Linear Classifiers 5/6

 Generalization to more classes
– Option 1: Build k classifiers, one for each class, with the

i-th one doing the classification: Class i OR not Class i

Drawback: Need to "vote" when more than one class wins

– Option 2: Build k ∙ (k – 1) / 2 classifiers, one for each
subset of two classes

Drawback: For large k, that's a lot of classifiers !

– Option 3: Extend theory of the respective approach to
deal with more than two classes directly

Drawback: Sometimes hard (not for Naïve Bayes though)

For ES11 we work with Option 1, but only for one class

10

Linear Classifiers 6/6

 When the data is not linearly separable
– Option 1: extend the method to accept "outliers"

Naïve Bayes does this by definition: it always finds some
hyperplane, whether the data is linearly separable or not

– Option 2: suitably transform the data to some higher-
dimensional space, where it becomes (better) separable

11

Naïve Bayes 1/4

 Recap from last lecture
– Let the vocabulary of all words be V = {v1, …, v|V|}

Beware: in todays lecture, w is reserved for normal vectors
of hyperplanes, which is why we denote a word by v here

– Recall how NB predicts the probability of a class C for d

Pr(C=c | D=d) = Πvi in D pic ∙ pc / Pr(D=d)

where pic = Pr(W=vi | C=c) and the factor is taken multiple
times for multiple occurrence of vi in document d

– We can equivalently write this as

Pr(C=c | D=d) = Πi=1,…,|V| pic
tfi ∙ pc / Pr(D=d)

where tfi is the number of occurrences of vi in D
12

Naïve Bayes 2/4

 Two-class NB is a linear classifier
– Assume our two classes are called A and B, and define

b ϵ R and w ϵ R|V| as follows:

b = – log2 (pA / pB), wi = log2 (piA / piB)

Then NB predicts A if and only if w ● x – b > 0

You should prove this yourself in Exercise 11.1

This is a good exercise for understanding the linear algebra
behind linear classifiers. It's not hard, but you have to
understand the basic concepts, so perfect exercise :-)

13

Naïve Bayes 3/4

 Our toy example from Lecture 10
– Let us recap the math for a general document

aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B

14

1

Naïve Bayes 4/4

 Our toy example from Lecture 10
– Now express geometrically, in terms of w and b

aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B

15

CORRECTION:
The formula for w1, w2
above is wrong, the one

on slide 13 is correct
(the result above is correct

anyway though)

Perceptrons 1/6

 Intuition
– A perceptron is a linear classifier that iteratively computes

the w and b that define the hyperplane used for prediction

– The w and b are greedily improved in each iteration

– If the training set is linearly separable, the algorithm provably
terminates

16

Perceptrons 2/6

 Algorithm
– Initialization: set w = 0 (all-zero vector) and b = 0

– Then iterate over the objects from the training set in
random order, and for each object x do the following:

If w ● x – b gives the right prediction, do nothing

If w ● x – b gives the wrong prediction, update w and b:

if w ● x – b ≤ 0 : w ←	w + x and b ←	b – 1

if w ● x – b ≥ 0 : w ←	w – x and b ←	b + 1

– Repeat until no more change in w or fixed no. of rounds

For ES11, find out a good termination condition yourself

17

Perceptrons 3/6

 First few iterations on our toy example
aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B

18

Perceptrons 4/6

 Convergence, intuition
– In each iteration, w and b are fixed "towards" the right

prediction for the x under consideration:

Assume w ● x – b ≤ 0 when it should be > 0

Then we update to w' = w + x and b' = b – 1

Then w' ● x – b' = w ● x – b + |x|2 + 1

This pushes w' ● x – b' in the right direction (towards > 0)

The hope is that the various updates (for the various x) do
not cancel each other out, and eventually all predictions are
correct on the training set

That is, a separating hyperplane is found … if it exists

19

Perceptrons 5/6

 Convergence, proof sketch
– Without loss of generality, we can omit the b

Just add another dimension d+1, and let the value of all
objects be -1 in that dimension … then wd+1 is like the b

– Let w(k) be the w after the k-th correction of w

– Then we can prove that |w(k+1)| ≥ ε ∙ k

That is, |w| increases by a fixed amount for each correction

– We can also prove that |w(k+1)| ≤ C ∙ √k

That is, |w| increases only sublinearly with k

– This implies that k ≤ C2 / ε2 … a fixed #iterations suffice

20

Perceptrons 6/6

 Problems
– If the training data is linearly separable, the perceptron

algorithm finds a separating hyperplane

– However, there are many options for that hyperplane, some
more reasonable than others

The perceptron algorithm finds any of these

21

Perceptron Refinements 1/4

 Refinements we already discussed
– Change the (pre-determined) number of iterations

– Terminate when change in precision (on training set)
drops below a certain threshold

– Remove frequent words

– Use tf.idf instead of tf to represent documents

– Use different / additional features, e.g. word bigrams

22

Perceptron Refinements 2/4

 Averaging
– Take the average of all w from all iterations … including

all the iterations where w did not change

That is, if you have 10 iterations and a training set of
size 100, you take the average of 1000 w vectors

– Intuition 1: the final changes to w are due to relative
few documents (which are still misclassified)

Averaging de-emphasizes the w vectors from the end

– Intuition 2: good values of w are not changed for many
iterations (where they classify elements correctly)

Averaging emphasizes those "good" w vectors

23

Perceptron Refinements 3/4

 Logistic Regression
– Let S(t) = 1 / (1 + e-t) … then S(w ● x) can be

interpreted as the probability that x is classified as +1

– We can now try to find the w such that the observed
data is most likely … another instance of MLE

– This gives the following refined update step:

Class of x is +1 : w ←	w + α ∙ a ∙ x

Class of x is –1 : w ←	w – α ∙ a' ∙ x

where a = 1 - S(w ● x) and a' = S(w ● x) and α is a
tuning parameter (the so-called learning rate)

24

Perceptron Refinements 4/4

 Batching
– Given a w, consider a whole batch B of training elements

The size of the batch is a parameter to play around with

– For each xi ϵ B compute update term with respect to w

Simple Perceptron: + x if class is +1, –x otherwise

"Logistic" Perceptron: + α ∙ a ∙ x … or … – α ∙ a' ∙ x

– Then add all the update terms to w to obtain a new w

Batching mainly improves performance (a lot), but it also
affects the precision (since it leads to a different w)

25

References

 Wikipedia
– http://en.wikipedia.org/wiki/Linear_classifier

– http://en.wikipedia.org/wiki/Perceptron

– https://en.wikipedia.org/wiki/Logistic_regression

26

