Information Retrieval WS 2016 / 2017

Lecture 11, Tuesday January 17th, 2017 (Classification, Naive Bayes)

> Prof. Dr. Hannah Bast Patrick Brosi Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

- Organizational
 - Your results + experiences with ES10 LSI
- Contents
 - Classification introduction and examples
 - Probability recap two crash courses
 - Naïve Bayes algorithm, example, implementation
 - Exercise Sheet 11: learn to predict the genre and rating from a given movie description using Naïve Bayes

Summary / excerpts

- "seeing the term-pairs was pretty mind-blowing"
- Most of you are starting to appreciate the Linear Algebra...
- ... and numpy
- Performance problems with average_p() from ES 2 ML
- Only marginal improvements with added LSI, very bad results if you only use LSI.
- Many pairs not really synonyms:

her – he, won – for, awards – for, nominated – best, international – festival, ...

- How to go to bed early?
 - Advantages: you feel like a functioning member of society again, you can see the sun rise...
 - Just get up earlier... painful
 - Drugs (red wine, sleeping pills...) unhealthy in the long run
 - Go-to-bed-algorithm ... spend 8h debugging it
 - Don't post on the forum late at night
 - Sleep cycle reset: just stay awake until you are in sync again with a socially acceptable sleeping pattern... works, but you will be completely exhausted for some days

Your experiences with ES10

- But should you go to bed early?
 - Each of you has a private internal clock (Circadian rhythm) offset... your Chronotype
 - Some flexibility (+/- 2 hours), but anything greater than that can lead to problems
 - "Night owls" may be better in intuitive intelligence, creative thinking and inductive reasoning...
 - ...but they lag behind early-risers in academic performance
 - The human circadian rhythm may actually be not 24h long, but 24h and 11m (free running sleep)

So maybe night owls are just insensitive to external zeitgebers

Classification 1/5

FREIBURG

Problem

- Given **objects** and **classes**
- Goal: given an object, predict to which class it belongs
- To achieve that, we are given a training set of objects, each labeled with the class to which it belongs
- From that we can (try to) learn which kind of objects belong to which class

Example 1 (natural language text)

– Training set of documents, each labeled with its class

Flying Saucer Rock n Roll from 1998 is a 12-minute spoof of a 1950s black and white science fiction B-movie ... Comedy

The Conversation is a 1974 American psychological thriller film written, produced and directed ... Thriller

Toby the pup in the museum is he first cartoon in a series of twelve. Toby works as a janitor in a museum ... Animation

– Prediction

Heavy Times one summer afternoon, out of boredom and peer pressure, three best friends go to visit ... which class?

Example 2 (artificial documents)

- Training set of documents, each labeled with its class

aba	Α
baabaaa	Α
bbaabbab	В
abbaa	Α
abbb	В
bbbaab	В

Just two words (a and b, spaces omitted), and two classes

Prediction

abababa	which class?
baaaaaa	which class?

Difference to K-means

- K-means can also be seen as assigning (predicting) a class label for each object ... each cluster = one class
- Difference 1: the clusters have no "names"
- Difference 2: k-means has no learning phase (where it could learn how objects and classes relate)

This is called **unsupervised** learning ... in contrast, a method like Naïve Bayes does **supervised** learning

Difference 3: classification methods do soft clustering
 = for each object, output a probability for each class

But one often wants only the most probable class

Classification 5/5

Quality evaluation

- Given a **test set** of labeled documents, and the predictions from a classification algorithm
- For each class c let:

 $D_c =$ documents labeled c (in the test set)

 D'_{c} = documents classified as c (by the algorithm)

– Then (note that these are **per class**)

Precision	$P \coloneqq D_{c}' \cap D_{c} / D_{c}' $
Recall	$R \coloneqq D_{c}' \cap D_{c} / D_{c} $
F-measure	$F \coloneqq 2 \cdot P \cdot R / (P + R)$

Motivation

- In this lecture, we will look at Naïve Bayes, one of the simplest (and most widely used) classification algorithms
- Naïve Bayes makes probabilistic assumptions
- For that, two very basic concepts from probability theory need to be understood:

Maximum Likelihood Estimation (MLE)

Conditional probabilities and Bayes Theorem

 The following two slides are to refresh your memory concerning both of these

Probability recap 2/4

• Maximum Likelihood Estimation (MLE) $\int^{H_{a_{\alpha}}J_{S}}$

– Consider a sequence of coin flips, for example

Tail

 $\sum_{P_{v}(\mathcal{H})=\frac{5}{20}=\frac{7}{4}}$

– Which Pr(H) and Pr(T) are the most likely?

- Looks like $Pr(H) = \frac{1}{4}$ and $Pr(T) = \frac{3}{4}$... $\chi := \mathcal{P}_{r}(H)$ $\mathcal{P}_{r}(T) = \frac{1}{4}$

$$P = P_{x} \left(HHTTT \dots HTT \right) = x^{5} \cdot (1-x)^{15} \quad L = maximize this$$
Equiv:
$$f(x) = \ln(p) = \ln(x^{5} \cdot (1-x)^{15}) = \ln x^{5} + \ln(1-x)^{15} = 5\ln x + 75\ln(7-x)$$

$$f'(x) = \frac{5}{x} + \frac{75}{(7-x)} \cdot (-7) = \frac{5}{x} - \frac{75}{(7-x)} = 0 = 55 - 5x = 75x$$

$$= 55 = 20x = 5x = \frac{7}{4}$$

Conditional probabilities ... continued

- Denote by $Pr(A \mid B)$ the probability of $A \cap B$ in the space B
 - (1) $Pr(A | B) := Pr(A \cap B) / Pr(B)$
 - (2) $Pr(A \mid B) \cdot Pr(B) = Pr(B \mid A) \cdot Pr(A)$
- The latter is called **Bayes Theorem**, after Thomas Bayes, 1701 – 1761
- For an intuitive understanding, assume that Ω is finite, and $\alpha \in A$. $P_{v}(A \mid B) = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|}{|S|} = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|}{|A|} = \frac{|A \cap B|}{|A|}$

14

Probabilistic assumption

- Underlying **probability distributions**:

A distribution p_c over the classes ... where $\Sigma_c p_c = 1$

For each c, a distr. p_{wc} over the words ... where $\Sigma_w p_{wc} = 1$

– Naïve Bayes assumes the following process for generating a document D with m words $W_1...W_m$ and class label C

Pick C=c with prob. p_{c} , then pick each word $W_{i}\!=\!w$ with probability p_{wc} , independent of the other words

This is clearly unrealistic (hence the name **Naive** Bayes): e.g. when "Bielefeld" is present, "existence" is less likely

Learning phase

- For a training set T of objects, let:
 - T_c = the set of documents from class c

 n_{wc} = #occurrences of word w in documents from T_c

 $n_c = \#$ occurrences of all words in documents from T_c

– We compute the p_c and p_{wc} using simple maximum likelihood estimation (MLE), as explained on Slide 12

 $\begin{array}{ll} p_c \coloneqq |T_c| \; / \; |T| & \quad \mbox{global likeliness of a class} \\ p_{wc} \coloneqq n_{wc} \; / \; n_c & \quad \mbox{likeliness of a word for a class} \end{array}$

Naive Bayes 3/11

Learning phase, example

- Consider Example 2 (artificial documents)

17

Prediction

For a given document d we want to compute
 Pr(C=c | D=d) ... for each class c
 The probability of class c, given document d

- Using Bayes Theorem, we have:

 $Pr(C=c \mid D=d) = Pr(D=d \mid C=c) \cdot Pr(C=c) / Pr(D=d)$

- Using our (naïve) probabilistic assumptions, we have: $Pr(D=d \mid C=c) = Pr(W_1=w_1 \cap ... \cap W_m=w_m \mid C=c)$ $= \prod_{i=1,...,m} Pr(W_i=w_i \mid C=c)$

- Prediction ... continued
 - We thus obtain that Pr(C=c | D=d)

$$= \Pi_{i=1,...,m} \underbrace{\Pr(W_i = w_i \mid C = c)}_{p_{i=1,...,m}} \underbrace{\Pr(W_i = w_i \mid C = c)}_{p_{i=1,...,m}} \frac{\Pr(W_i = w_i \mid C = c)}{p_{i=1,...,m}} \frac{\Pr(W_i = w_i \mid C = c)}{p_{i=1,...,m}$$

For the product in the front just take the p_{wc} for all words w in the document and multiply them (if a word w occurs multiple times, also take the factor p_{wc} multiple times)

– Note that the Pr(D=d) is the same for all c

We can hence compute the class c with the largest $Pr(C=c \mid D=d)$ entirely from the learned p_{wc} and p_c

Prediction, example

- Consider Example 2 (artificial documents)

Smoothing

- Problem: when only one $p_{wc} = 0$, then Pr(C=c | D=d) = 0

This happens rather easily, namely when d contains a word that did not occur in the training set for class c

Therefore, during training we actually compute

 $p_{wc} \coloneqq (n_{wc} + \epsilon) / (n_c + \epsilon \cdot \#vocabulary) \qquad \forall s : P_{w_c} \succeq \frac{m_{w_c}}{m_c}$ This is like adding every word ϵ times for every class m_c For ES11, take $\epsilon = 1/10$

Smoothing ... continued

- What about $p_c = 0$ for a class c ?

This means, that $|T_c| = 0$, that is, there was no document from class c in the training set

- When $p_c = 0$, then Pr(C=c | D=d) = 0 for any document d

But that is reasonable: if we did not see any document from a particular class c during training, we can learn nothing for that class, and we cannot meaningfully predict it

So no smoothing needed for that case

Numerical stability

 Problem: a product of many small probabilities quickly becomes zero due to limited precision on the computer

For example, the smallest positive number that can be represented with an 8-byte double is $\approx 10^{-308} \approx 2^{-1024}$

Then multiplying 52 probabilities $< 10^{-6}$ is already zero

 Compute the **log**-probabilities! ... then products of probabilities translate into sums of log-probabilities

Instead of comparing
$$q_A$$
 and q_B , let's compare $\log(q_A)$ and $\log(q_B)$
 $\log TT_P_i = \sum_i \log P_i$

Some possible refinements

 Instead of words, we could take any other quantifiable aspect of a document as so-called "feature"

For example, also consider all (two-word) phrases

- Omit non-predictive words like "and"

For example, omit the most frequent words

- In training, replace the word frequencies n_{wc} by $tf.idf_{wc}$ And correspondingly, replace n_c by Σ_w $tf.idf_{wc}$
- For ES11, none of these are required ... but feel free to play around with them

Linear algebra (LA)

 Assume the documents are given as a term-document matrix, like we have seen it many times now

For ES11, we provide you with the code to construct the document-term matrix with simple tf entries

 Then all the necessary computations can again be done very elegantly and efficiently using matrix operations

Whenever you have to compute a large number of (weighted) sums in a uniform manner, this calls for LA

However, if you feel more comfortable with (boring and inefficient) for-loops, you can use those for ES11 too

References

Further reading

– Textbook Chapter 13: Text classification & Naive Bayes

http://nlp.stanford.edu/IR-book/pdf/13bayes.pdf

- Advanced material on the whole subject of learning
 <u>Elements of Statistical Learning, Springer 2009</u>
- Wikipedia
 - http://en.wikipedia.org/wiki/Naive Bayes classifier
 - http://en.wikipedia.org/wiki/Bayes' theorem
 - <u>http://en.wikipedia.org/wiki/Maximum_likelihood</u>