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Overview of this lecture

 Organizational

– Your results + experiences with ES10 LSI

 Contents

– Classification introduction and examples

– Probability recap two crash courses

– Naïve Bayes algorithm, example, implementation

– Exercise Sheet 11:  learn to predict the genre and rating

from a given movie description using Naïve Bayes

2



Your experiences with ES10

 Summary / excerpts

– "seeing the term-pairs was pretty mind-blowing"

– Most of you are starting to appreciate the Linear Algebra…

– … and numpy

– Performance problems with average_p() from ES 2 ML

– Only marginal improvements with added LSI, very bad results 

if you only use LSI.

– Many pairs not really synonyms:

her – he, won – for, awards – for, nominated – best, 

international – festival, …
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Your experiences with ES10

 How to go to bed early?

– Advantages: you feel like a functioning member of society 

again, you can see the sun rise…

– Just get up earlier… painful

– Drugs (red wine, sleeping pills…) unhealthy in the long run

– Go-to-bed-algorithm … spend 8h debugging it

– Don't post on the forum late at night

– Sleep cycle reset: just stay awake until you are in sync 

again with a socially acceptable sleeping pattern… works, but 

you will be completely exhausted for some days
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Your experiences with ES10

 But should you go to bed early?

– Each of you has a private internal clock (Circadian rhythm) 

offset…  your Chronotype

– Some flexibility (+/- 2 hours), but anything greater than that 

can lead to problems

– "Night owls" may be better in intuitive intelligence, creative 

thinking and inductive reasoning… 

– …but they lag behind early-risers in academic performance

– The human circadian rhythm may actually be not 24h long, 

but 24h and 11m (free running sleep)

So maybe night owls are just insensitive to external zeitgebers
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Classification   1/5

 Problem

– Given objects and classes

– Goal: given an object, predict to which class it belongs

– To achieve that, we are given a training set of objects, 

each labeled with the class to which it belongs

– From that we can (try to) learn which kind of objects 

belong to which class
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Classification   2/5

 Example 1 (natural language text)

– Training set of documents, each labeled with its class

Flying Saucer Rock n Roll from 1998 is a 12-minute spoof of

a 1950s black and white science fiction B-movie …   Comedy

The Conversation is a 1974 American psychological thriller film                

written, produced and directed …      Thriller

Toby the pup in the museum is he first cartoon in a series of 

twelve. Toby works as a janitor in a museum ... Animation

– Prediction

Heavy Times one summer afternoon, out of boredom and peer 

pressure, three best friends go to visit … which class?
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Classification   3/5

 Example 2 (artificial documents)

– Training set of documents, each labeled with its class

aba A

baabaaa A

bbaabbab B

abbaa A

abbb B

bbbaab B

Just two words (a and b, spaces omitted), and two classes

– Prediction

abababa which class?

baaaaaa which class?
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Classification   4/5

 Difference to K-means

– K-means can also be seen as assigning (predicting) a

class label for each object … each cluster = one class

– Difference 1: the clusters have no "names"

– Difference 2: k-means has no learning phase (where it 

could learn how objects and classes relate)

This is called unsupervised learning … in contrast, a 

method like Naïve Bayes does supervised learning

– Difference 3: classification methods do soft clustering

= for each object, output a probability for each class

But one often wants only the most probable class
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Classification   5/5

 Quality evaluation

– Given a test set of labeled documents, and the 

predictions from a classification algorithm

– For each class c let:

Dc = documents labeled c (in the test set)

Dꞌc = documents classified as c   (by the algorithm)

– Then (note that these are per class)

Precision P ≔ |Dꞌc ∩ Dc| / |Dꞌc|

Recall R ≔ |Dꞌc ∩ Dc| / |Dc|

F-measure F ≔ 2 ∙ P ∙ R / (P + R)
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Probability recap   1/4

 Motivation

– In this lecture, we will look at Naïve Bayes, one of the 

simplest (and most widely used) classification algorithms

– Naïve Bayes makes probabilistic assumptions

– For that, two very basic concepts from probability theory 

need to be understood:

Maximum Likelihood Estimation (MLE)

Conditional probabilities and Bayes Theorem

– The following two slides are to refresh your memory 

concerning both of these
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Probability recap   2/4

 Maximum Likelihood Estimation (MLE)

– Consider a sequence of coin flips, for example

HHTTTTTTHTTTTTHTTHTT    (5 times H, 15 times T)

– Which Pr(H) and Pr(T) are the most likely?

– Looks like Pr(H) = ¼ and Pr(T) = ¾  …
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Probability recap   3/4

 Conditional probabilities

– Let A and B be events in a probability space Ω

For example, rolling a dice.
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Probability recap   4/4

 Conditional probabilities … continued

– Denote by Pr(A | B) the probability of A ∩ B in the space B

(1) Pr(A | B) := Pr(A ∩ B) / Pr (B)

(2) Pr(A | B) ∙ Pr(B) = Pr (B | A) ∙ Pr(A)

– The latter is called Bayes Theorem,

after Thomas Bayes, 1701 – 1761

– For an intuitive understanding, assume

that Ω is finite, and all x in Ω equiprobable:
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Naive Bayes   1/11

 Probabilistic assumption

– Underlying probability distributions:

A distribution pc over the classes … where Σc pc = 1

For each c, a distr. pwc over the words … where Σw pwc = 1

– Naïve Bayes assumes the following process for generating

a document D with m words W1…Wm and class label C

Pick C=c with prob. pc , then pick each word Wi=w with 

probability pwc , independent of the other words

This is clearly unrealistic (hence the name Naive Bayes):

e.g. when “Bielefeld" is present, “existence" is less likely
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Naive Bayes 2/11

 Learning phase

– For a training set T of objects, let:

Tc = the set of documents from class c

nwc = #occurrences of word w in documents from Tc

nc = #occurrences of all words in documents from Tc

– We compute the pc and pwc using simple maximum 

likelihood estimation (MLE), as explained on Slide 12

pc ≔ |Tc| / |T| global likeliness of a class

pwc ≔ nwc / nc likeliness of a word for a class
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Naive Bayes   3/11

 Learning phase, example

– Consider Example 2 (artificial documents)

aba A

baabaaa A

bbaabbab B

abbaa A

abbb B

bbbaab B
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Naive Bayes   4/11

 Prediction

– For a given document d we want to compute

Pr(C=c | D=d) … for each class c    

The probability of class c, given document d

– Using Bayes Theorem, we have:

Pr(C=c | D=d) = Pr(D=d | C=c) ∙ Pr(C=c) / Pr(D=d)

– Using our (naïve) probabilistic assumptions, we have:

Pr(D=d | C=c) = Pr(W1=w1 ∩ … ∩ Wm=wm | C=c)

= Πi=1,...,m Pr(Wi=wi | C=c)

18



Naive Bayes   5/11

 Prediction … continued

– We thus obtain that Pr(C=c | D=d)

= Πi=1,...,m Pr(Wi=wi | C=c) ∙ Pr(C=c) / Pr(D=d)

= Πi=1,...,m pwic 
∙ pc / Pr(D=d)

For the product in the front just take the pwc for all words

w in the document and multiply them (if a word w occurs 

multiple times, also take the factor pwc multiple times)

– Note that the Pr(D=d) is the same for all c

We can hence compute the class c with the largest

Pr(C=c | D=d) entirely from the learned pwc and pc
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Naive Bayes   6/11

Recall from training:

pA = pB = 1/2 

paA = 2/3 pbA = 1/3
paB = 1/3 pbB = 2/3

 Prediction, example

– Consider Example 2 (artificial documents)

aba A

baabaaa A

bbaabbab B

abbaa A

abbb B

bbbaab B

– Let us predict the class for aab … A or B ?
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Naive Bayes   7/11

 Smoothing

– Problem: when only one pwc = 0, then Pr(C=c | D=d) = 0

This happens rather easily, namely when d contains a word 

that did not occur in the training set for class c

– Therefore, during training we actually compute

pwc ≔ (nwc + ɛ) / (nc + ɛ ∙ #vocabulary)

This is like adding every word ɛ times for every class

For ES11, take ɛ = 1/10

21



Naive Bayes   8/11

 Smoothing … continued

– What about pc = 0 for a class c ?

This means, that |Tc| = 0, that is, there was no document 

from class c in the training set

– When pc = 0, then Pr(C=c | D=d) = 0 for any document d

But that is reasonable: if we did not see any document from 

a particular class c during training, we can learn nothing for 

that class, and we cannot meaningfully predict it

So no smoothing needed for that case
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Naive Bayes   9/11

 Numerical stability

– Problem: a product of many small probabilities quickly 

becomes zero due to limited precision on the computer

For example, the smallest positive number that can be 

represented with an 8-byte double is ≈ 10-308

Then multiplying 52 probabilities < 10-6 is already zero

– Compute the log-probabilities! … then products

of probabilities translate into sums of log-probabilities
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Naive Bayes   10/11

 Some possible refinements

– Instead of words, we could take any other quantifiable 

aspect of a document as so-called "feature"

For example, also consider all (two-word) phrases 

– Omit non-predictive words like "and"

For example, omit the most frequent words

– In training, replace the word frequencies nwc by tf.idfwc

And correspondingly, replace nc by ∑w tf.idfwc

– For ES11, none of these are required … but feel free to 

play around with them 
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Naive Bayes   11/11

 Linear algebra (LA)

– Assume the documents are given as a term-document 

matrix, like we have seen it many times now

For ES11, we provide you with the code to construct

the document-term matrix with simple tf entries

– Then all the necessary computations can again be done 

very elegantly and efficiently using matrix operations

Whenever you have to compute a large number of 

(weighted) sums in a uniform manner, this calls for LA

However, if you feel more comfortable with (boring and 

inefficient) for-loops, you can use those for ES11 too
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