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Overview of this lecture

 Organizational
– Your experiences with ES9 Clustering

 Contents
– Latent Semantic Indexing (LSI) more linear algebra magic

– Using LSI for retrieval three variants

– ES10: modify your VSM code from ES8 to use LSI, evaluate
the benchmark again, and use LSI to find related terms 



Experiences with ES9   1/5

 Summary / excerpts
– Interesting + very nice linear algebra

– Several of you skipped this sheet due to holidays

– For some it was fast, others took more time than expected

"We expected this sheet to be very easy and fast … 
however, debugging was very long and tedious"   

"This was the easiest sheet I ever failed to solve"

"I'll start looking for the next Zen monastery to join"

– Seeing the centroid words was the best part!

– "Transpose here and there until the doctest ran through"

– "Redundancy in TIP file and Exercise Sheet is not good"
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Experiences with ES9   2/5

 Results
– Many clusters on coherent "topics":

thriller horror fiction crime action dead sci fi …

kong hong wong chan lau cheung martial …

– Some clusters of a different nature

to, her, his, he, they, their, she, that, are, who … 

as, was, in, series, first, of, the, to, s, films, …

– Some clusters are mixes of "topics" and general words

short animated 2012 2011 2010 written 2007 drama …

comedy fatty romance italian written harold lloyd …
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Experiences with ES9   3/5

 Reincarnation, excerpts from your thoughts
– Basic principle of reincarnation: Some soul/software is 

transferred from old to new body/hardware.

– If a "soul" exists, it's not: solid, liquid, gas (macroscopic), 
nor electric, magnetic, light, radiation (microscopic)

– Some say, they remember foreign countries … But with 
LSD people see purple elephants →	don't trust your brain

– Why is soul memoryless? (people who were reincarnated 
do not recall their previous life)

– Reincarnation seems another excuse to not deal with the 
difficulties of the current life (e.g. "caste system")
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Experiences with ES9   4/5

 Reincarnation, naïve view
– There is some invisible "spirit" or "ghost" inside of us

– Which lives on when the body dies

– And then somehow finds its way into the next body

– And somehow forgets everything about the previous life

– Maybe that is so … maybe … but probably not

However, some of you correctly pointed out that since we 
know nothing about the stuff that consciousness is made 
of, we cannot really know anything about this
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Experiences with ES9   5/5

 Reincarnation, "interface" view
– A common phenomenon in our universe: very complex 

internal state ↔ very compact external manifestation

Example: personality ↔ a piece of communication

Example: software executable ↔ the algorithm behind

– Living beings are very good at (reverse) engineering the 
complex inner state from the compact representation

– With death, your complex internal state dies, but some 
external manifestations easily live on (e.g. a book written) 

– A new "blank" organism with a suitable configuration can 
reverse-engineer the internal state (not exactly, of course)

– In a very concrete sense, something has "reincarnated" then
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Latent Semantic Indexing   1/10

 Motivation
– Let's look at our example toy collection from L8 again:

D1 and D2 and D3 are "about" surfing the web

D5 and D6 are "about" surfing on the beach

internet and web are synonyms, surfing is a polysem
= means different things in different context
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1



Latent Semantic Indexing   2/10

 Motivation
– Let's look at the query web surfing again, using dot-

product similarity as explained in L8

– Then sim(D3, Q) > sim(D2, Q) = sim(D5, Q)

But D2 seems just as relevant for the query as D3, only 
that the word "internet" is used instead of "web"
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Latent Semantic Indexing   3/10

 Conceptual solution

Add the missing synonyms to the documents

Then indeed: sim(D1, Q) = sim(D2, Q) = sim(D3, Q)

The goal of LSI is to do something like this automagically
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D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Latent Semantic Indexing   4/10

 A simple but powerful observation

The modified matrix has column rank 2

That is, we can write each column as a (different) linear   
combination of the same two base columns (B1 and B2)

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank
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D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1



Latent Semantic Indexing   5/10

 Matrix factorization

Equivalently: the 4 x 6 term-document matrix can be 
written as a product  of a 4 x 2 matrix with a 2 x 6 matrix

The base vectors B1 and B2 are the underlying "concepts"

The vectors D'1, …, D'6 are the representation of the   
documents in the (lower-dimensional) "concept space"  
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D1 D2 D3 D4 D5 D6

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 2 1 1
0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

D'1 D'2 D'3 D'4 D'5 D'6

1 1 1 1 0 0
0 0 0 1 1 1

= ●



Latent Semantic Indexing   6/10

 The goal of LSI
– Given an m x n term-document matrix A and k < rank(A)

– Then find a matrix A' of (column) rank k such that the 
difference between A' and A is as small as possible

Formally:   A' = argminA' m x n with rank k ‖A – A' ‖

For the ‖… ‖ we take the so-called Frobenius-norm

This is defined as ‖D ‖ := sqrt(∑ij Dij
2)

The reason for using this norm is purely technical: that 
way, the math on the next slides works out nicely
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Latent Semantic Indexing   7/10

 How to find / compute such an A'
– We first compute the so-called singular value 

decomposition (SVD) of the given matrix A :

Theorem: for any m x n matrix A of rank r, there
exist U, S, V such that  A = U ∙ S ∙ V , and where

U is an m x r matrix with UT ∙ U = Ir the r x r identity matrix

S is an r x r matrix with non-zero entries only on its diag.

V is an r x n matrix with V ∙ VT = Ir
The decomposition is unique up to simultaneous 
permutation of the rows/columns of U, S, and V
Standard form: diagonal entries of S positive and sorted
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Latent Semantic Indexing   8/10

 Using the SVD, our task becomes easy
– Let A = U ∙ S ∙ V be the SVD of A

– For a given k < rank(A) let

Uk = the first k columns of U now an m x k matrix

Sk = the upper k x k part of S now a k x k matrix

Vk = the first k rows of V now a k x n matrix

Note: then Uk
T ∙ Uk = Ik and Vk ∙ Vk

T = Ik
– Let  Ak = Uk ∙ Sk ∙ Vk

Then Ak is a matrix of rank k that minimizes ‖A – Ak ‖
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Latent Semantic Indexing   9/10

 How to compute the SVD
– Can be computed from the Eigenvector decomposition

See next slide for some of the mathematics behind

– In practice, the more direct Lanczos method is used

This has complexity O(k ∙ nnz), where k is the rank and
nnz is the number of non-zero values in the matrix

Note that for term-document matrices  nnz << n ∙ m

For ES10, just use svds from scipy.sparse.linalg
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Latent Semantic Indexing   10/10

 Some of the mathematics behind the SVD
– A real symmetric n x n matrix B has n pairwise orthogonal 

unit eigenvectors u1, …, un (with eigenvalues λ1, …, λn)

That is, B ∙ ui = λi ∙ ui and ui ● uj = 0, for i ≠ j, and |ui| = 1

Equivalently, B = U ∙ diag(λ1, …, λn) ∙ UT … and U ∙ UT = I 

– The matrices A ∙ AT and AT ∙ A are symmetric, hence there 
exist orthogonal U and V and diagonals S1 and S2 such that

A ∙ AT = U ∙ S1∙ UT and AT ∙ A = V ∙ S2 ∙ VT

– Let us assume that a decomposition A = U ∙ S ∙ V exists:
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Using LSI for better Retrieval   1/8

 Variant 1: work with Ak instead of A

18

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.9 0.6 0.6 1.0 0.0 0.0
0.9 0.6 0.6 1.0 0.0 0.0
1.1 0.9 0.9 2.1 1.0 1.0

-0.1 0.1 0.1 0.9 1.0 1.0

Our example A from the beginning best rank-2 approximation A2



Using LSI for better Retrieval   2/8

 Variant 1: work with Ak instead of A
– Problem: Ak is a dense matrix, that is, most / all of it's

m ∙ n entries will be non-zero

Typically, both m and n will be very large, and then 
already storing this matrix is infeasible 

E.g. if m = 1000 and n = 10M   m ∙ n = 10 G
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Using LSI for better Retrieval   3/8

 Variant 2: work with Vk instead of with A
– Recall: Vk gives the representation of the documents in 

the k-dimensional concept space
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.4 0.3 0.3 0.7 0.3 0.3
0.5 0.2 0.2 0.0 -0.6 -0.6

Our example A from the beginning V2 from the SVD of A



Using LSI for better Retrieval   4/8

 Variant 2: work with Vk instead of with A
– Observation: Vk is a dense matrix, that is, most or all of 

its k ∙ n entries are non-zero

Note: the original matrix A has m' ∙ n non-zero entries, 
where m' is the average number of words in a document

So storing Vk instead of A is ok if k ≈ m' or smaller

Note: no need for a sparse representation (= an 
inverted index) when storing / using Vk

This is the variant you should use for ES10.4
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Using LSI for better Retrieval   5/8

 Variant 2: work with Vk instead of with A
– Problem 2: we need to map the query to concept space

The dot-product similarity of query q with all documents is

qT ∙ Ak = qT ∙ (Uk ∙ Sk ∙ Vk) = (qT ∙ Uk ∙ Sk) ∙ Vk

Then qk
T := qT ∙ Uk ∙ Sk is query mapped to concept space

– The dot product qk
T ∙ Vk requires time ~ n ∙ k … since both

qk and Vk are dense 

In comparison: computing the similarities of q with the 
original documents requires time O(n ∙ #q) and less

where #q = number of query words in q
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Using LSI for better Retrieval   6/8

 Variant 3: expand the original documents
– In Variant 2, we have transformed both the query and 

the documents to concept space

– LSI can also be viewed as doing document expansion 
in the original space + no change in the query

Namely, let Tk = Uk ∙ Uk
T this is an m x m matrix

Then one can easily prove that Ak = Tk ∙ A

For ES10, simply compute Tk from Uk as shown, then 
compute the 100 term pairs with the largest entries in Tk

23



Using LSI for better Retrieval   7/8

 Variant 3: expand the original documents
– Here is some intuition for Tk, assuming 0 or 1 entries

In practice, we can get 0-1 entries by setting all entries    
in T above a certain threshold to 1, and all others to 0
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Using LSI for better Retrieval   8/8

 Linear combination with original scores
– Experience: LSI adds some useful information to the term-

document matrix, but also a lot of noise

– In practice, one therefore uses a linear combination of the 
original scores and the LSI scores:

Variant 1: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Ak

Variant 2: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qk
T ∙ Vk  

Variant 3: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Tk ∙ A

For ES10, take Variant 2 and experiment with a good λ
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