
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 10, Tuesday January 10th, 2017
(Latent Semantic Indexing)

Overview of this lecture

 Organizational
– Your experiences with ES9 Clustering

 Contents
– Latent Semantic Indexing (LSI) more linear algebra magic

– Using LSI for retrieval three variants

– ES10: modify your VSM code from ES8 to use LSI, evaluate
the benchmark again, and use LSI to find related terms

Experiences with ES9 1/5

 Summary / excerpts
– Interesting + very nice linear algebra

– Several of you skipped this sheet due to holidays

– For some it was fast, others took more time than expected

"We expected this sheet to be very easy and fast …
however, debugging was very long and tedious"

"This was the easiest sheet I ever failed to solve"

"I'll start looking for the next Zen monastery to join"

– Seeing the centroid words was the best part!

– "Transpose here and there until the doctest ran through"

– "Redundancy in TIP file and Exercise Sheet is not good"
3

Experiences with ES9 2/5

 Results
– Many clusters on coherent "topics":

thriller horror fiction crime action dead sci fi …

kong hong wong chan lau cheung martial …

– Some clusters of a different nature

to, her, his, he, they, their, she, that, are, who …

as, was, in, series, first, of, the, to, s, films, …

– Some clusters are mixes of "topics" and general words

short animated 2012 2011 2010 written 2007 drama …

comedy fatty romance italian written harold lloyd …

4

Experiences with ES9 3/5

 Reincarnation, excerpts from your thoughts
– Basic principle of reincarnation: Some soul/software is

transferred from old to new body/hardware.

– If a "soul" exists, it's not: solid, liquid, gas (macroscopic),
nor electric, magnetic, light, radiation (microscopic)

– Some say, they remember foreign countries … But with
LSD people see purple elephants →	don't trust your brain

– Why is soul memoryless? (people who were reincarnated
do not recall their previous life)

– Reincarnation seems another excuse to not deal with the
difficulties of the current life (e.g. "caste system")

5

Experiences with ES9 4/5

 Reincarnation, naïve view
– There is some invisible "spirit" or "ghost" inside of us

– Which lives on when the body dies

– And then somehow finds its way into the next body

– And somehow forgets everything about the previous life

– Maybe that is so … maybe … but probably not

However, some of you correctly pointed out that since we
know nothing about the stuff that consciousness is made
of, we cannot really know anything about this

6

Experiences with ES9 5/5

 Reincarnation, "interface" view
– A common phenomenon in our universe: very complex

internal state ↔ very compact external manifestation

Example: personality ↔ a piece of communication

Example: software executable ↔ the algorithm behind

– Living beings are very good at (reverse) engineering the
complex inner state from the compact representation

– With death, your complex internal state dies, but some
external manifestations easily live on (e.g. a book written)

– A new "blank" organism with a suitable configuration can
reverse-engineer the internal state (not exactly, of course)

– In a very concrete sense, something has "reincarnated" then
7

Latent Semantic Indexing 1/10

 Motivation
– Let's look at our example toy collection from L8 again:

D1 and D2 and D3 are "about" surfing the web

D5 and D6 are "about" surfing on the beach

internet and web are synonyms, surfing is a polysem
= means different things in different context

8

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Latent Semantic Indexing 2/10

 Motivation
– Let's look at the query web surfing again, using dot-

product similarity as explained in L8

– Then sim(D3, Q) > sim(D2, Q) = sim(D5, Q)

But D2 seems just as relevant for the query as D3, only
that the word "internet" is used instead of "web"

9

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Latent Semantic Indexing 3/10

 Conceptual solution

Add the missing synonyms to the documents

Then indeed: sim(D1, Q) = sim(D2, Q) = sim(D3, Q)

The goal of LSI is to do something like this automagically

10

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Latent Semantic Indexing 4/10

 A simple but powerful observation

The modified matrix has column rank 2

That is, we can write each column as a (different) linear
combination of the same two base columns (B1 and B2)

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank

11

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

Latent Semantic Indexing 5/10

 Matrix factorization

Equivalently: the 4 x 6 term-document matrix can be
written as a product of a 4 x 2 matrix with a 2 x 6 matrix

The base vectors B1 and B2 are the underlying "concepts"

The vectors D'1, …, D'6 are the representation of the
documents in the (lower-dimensional) "concept space"

12

D1 D2 D3 D4 D5 D6

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 2 1 1
0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

D'1 D'2 D'3 D'4 D'5 D'6

1 1 1 1 0 0
0 0 0 1 1 1

= ●

Latent Semantic Indexing 6/10

 The goal of LSI
– Given an m x n term-document matrix A and k < rank(A)

– Then find a matrix A' of (column) rank k such that the
difference between A' and A is as small as possible

Formally: A' = argminA' m x n with rank k ‖A – A' ‖

For the ‖… ‖ we take the so-called Frobenius-norm

This is defined as ‖D ‖ := sqrt(∑ij Dij
2)

The reason for using this norm is purely technical: that
way, the math on the next slides works out nicely

13

Latent Semantic Indexing 7/10

 How to find / compute such an A'
– We first compute the so-called singular value

decomposition (SVD) of the given matrix A :

Theorem: for any m x n matrix A of rank r, there
exist U, S, V such that A = U ∙ S ∙ V , and where

U is an m x r matrix with UT ∙ U = Ir the r x r identity matrix

S is an r x r matrix with non-zero entries only on its diag.

V is an r x n matrix with V ∙ VT = Ir
The decomposition is unique up to simultaneous
permutation of the rows/columns of U, S, and V
Standard form: diagonal entries of S positive and sorted

14

Latent Semantic Indexing 8/10

 Using the SVD, our task becomes easy
– Let A = U ∙ S ∙ V be the SVD of A

– For a given k < rank(A) let

Uk = the first k columns of U now an m x k matrix

Sk = the upper k x k part of S now a k x k matrix

Vk = the first k rows of V now a k x n matrix

Note: then Uk
T ∙ Uk = Ik and Vk ∙ Vk

T = Ik
– Let Ak = Uk ∙ Sk ∙ Vk

Then Ak is a matrix of rank k that minimizes ‖A – Ak ‖

15

Latent Semantic Indexing 9/10

 How to compute the SVD
– Can be computed from the Eigenvector decomposition

See next slide for some of the mathematics behind

– In practice, the more direct Lanczos method is used

This has complexity O(k ∙ nnz), where k is the rank and
nnz is the number of non-zero values in the matrix

Note that for term-document matrices nnz << n ∙ m

For ES10, just use svds from scipy.sparse.linalg

16

Latent Semantic Indexing 10/10

 Some of the mathematics behind the SVD
– A real symmetric n x n matrix B has n pairwise orthogonal

unit eigenvectors u1, …, un (with eigenvalues λ1, …, λn)

That is, B ∙ ui = λi ∙ ui and ui ● uj = 0, for i ≠ j, and |ui| = 1

Equivalently, B = U ∙ diag(λ1, …, λn) ∙ UT … and U ∙ UT = I

– The matrices A ∙ AT and AT ∙ A are symmetric, hence there
exist orthogonal U and V and diagonals S1 and S2 such that

A ∙ AT = U ∙ S1∙ UT and AT ∙ A = V ∙ S2 ∙ VT

– Let us assume that a decomposition A = U ∙ S ∙ V exists:

17

Using LSI for better Retrieval 1/8

 Variant 1: work with Ak instead of A

18

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.9 0.6 0.6 1.0 0.0 0.0
0.9 0.6 0.6 1.0 0.0 0.0
1.1 0.9 0.9 2.1 1.0 1.0

-0.1 0.1 0.1 0.9 1.0 1.0

Our example A from the beginning best rank-2 approximation A2

Using LSI for better Retrieval 2/8

 Variant 1: work with Ak instead of A
– Problem: Ak is a dense matrix, that is, most / all of it's

m ∙ n entries will be non-zero

Typically, both m and n will be very large, and then
already storing this matrix is infeasible

E.g. if m = 1000 and n = 10M m ∙ n = 10 G

19

Using LSI for better Retrieval 3/8

 Variant 2: work with Vk instead of with A
– Recall: Vk gives the representation of the documents in

the k-dimensional concept space

20

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.4 0.3 0.3 0.7 0.3 0.3
0.5 0.2 0.2 0.0 -0.6 -0.6

Our example A from the beginning V2 from the SVD of A

Using LSI for better Retrieval 4/8

 Variant 2: work with Vk instead of with A
– Observation: Vk is a dense matrix, that is, most or all of

its k ∙ n entries are non-zero

Note: the original matrix A has m' ∙ n non-zero entries,
where m' is the average number of words in a document

So storing Vk instead of A is ok if k ≈ m' or smaller

Note: no need for a sparse representation (= an
inverted index) when storing / using Vk

This is the variant you should use for ES10.4

21

Using LSI for better Retrieval 5/8

 Variant 2: work with Vk instead of with A
– Problem 2: we need to map the query to concept space

The dot-product similarity of query q with all documents is

qT ∙ Ak = qT ∙ (Uk ∙ Sk ∙ Vk) = (qT ∙ Uk ∙ Sk) ∙ Vk

Then qk
T := qT ∙ Uk ∙ Sk is query mapped to concept space

– The dot product qk
T ∙ Vk requires time ~ n ∙ k … since both

qk and Vk are dense

In comparison: computing the similarities of q with the
original documents requires time O(n ∙ #q) and less

where #q = number of query words in q

22

Using LSI for better Retrieval 6/8

 Variant 3: expand the original documents
– In Variant 2, we have transformed both the query and

the documents to concept space

– LSI can also be viewed as doing document expansion
in the original space + no change in the query

Namely, let Tk = Uk ∙ Uk
T this is an m x m matrix

Then one can easily prove that Ak = Tk ∙ A

For ES10, simply compute Tk from Uk as shown, then
compute the 100 term pairs with the largest entries in Tk

23

Using LSI for better Retrieval 7/8

 Variant 3: expand the original documents
– Here is some intuition for Tk, assuming 0 or 1 entries

In practice, we can get 0-1 entries by setting all entries
in T above a certain threshold to 1, and all others to 0

24

Di
1
0
1
0

internet 1 1 0 0
web 1 1 0 0
surfing 0 0 1 0
beach 0 0 0 1

in
te

rn
et

w
eb

su
rfi

ng
be

ac
h

● =

D'i
1
1
1
0

Using LSI for better Retrieval 8/8

 Linear combination with original scores
– Experience: LSI adds some useful information to the term-

document matrix, but also a lot of noise

– In practice, one therefore uses a linear combination of the
original scores and the LSI scores:

Variant 1: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Ak

Variant 2: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qk
T ∙ Vk

Variant 3: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Tk ∙ A

For ES10, take Variant 2 and experiment with a good λ

25

References

 Further reading
– Textbook Chapter 18: Matrix decompositions & LSI

http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

– Deerwester, Dumais, Landauer, Furnas, Harshman

Indexing by Latent Semantic Analysis, JASIS 41(6), 1990

 Web resources
– http://en.wikipedia.org/wiki/Latent_semantic_indexing

– http://en.wikipedia.org/wiki/Singular_value_decomposition

– http://www.numpy.org/

– http://www.scipy.org/

26

