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Overview of this lecture

 Organizational
– Your experiences with ES7 Web app, part 2

– Demo of some web apps

 Contents
– Encoding last part of L7 again

– Vector Space Model (VSM) documents as vectors

– Exercise Sheet 8: re-implement your code from ES2 using
the VSM, and re-evaluate benchmark



Experiences with ES7   1/4

 Summary / excerpts
– Interesting + fun again, but more work than expected

Not much code, but a lot to understand and a lot that
can go wrong + encoding issues can drive you crazy

Many of you quite busy before Christmas .. as usual

– Happy to see the end result

– Jenkins required encoding tag in Java build.xml

– Add a slide on std::wstring conversion in C++

Was discussed on the forum + I added a slide now
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 Demos
– Many of you produced some really nice web apps

Let's look at a small selection together !

– Let us also appreciate the easter eggs (or rather: xmas
cookies) that were hidden in our new cities2.txt when 
searching for these lovely places:

Meteor

grubierF

Santas Village

4



Experiences with ES7   3/4

 Spiritual vs. Solid
– One of the hallmarks of our (self-)consciousness is that 

our brain constantly maintains a relative stable view of
the world around us (with us in it)

Note that, in reality, it's the opposite of stable: trillions
of particles in a constant flux at extremely high speed,
with a constant battle of life and death at all levels

– This model is extremely selective, conceptual, and biased

Selective: too much information, our brains ignore most

Conceptual: we see a "person" and not a mass of cells

Biased: our brain fills in the gaps for the sake of stability
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 Spiritual vs. Solid
– What's more important for your brain when seeing

another living being in the world:

See the trillions of cells this person is made of, and all
the biomolecular machines and motor proteins at work?

Have a good idea of the intentions of this person's mind?

– What's more important for your brain when seeing
an inanimate object in the world:

See the vast amount of space between the electrons
and the nuclei of the atoms the objects are made of?

Have a good idea of what happens when your body
collides with it?
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Vector Space Model   1/8

 Motivation
– For this lecture, it will be useful to represent documents

as vectors … here is our running example for today:

– Each row corresponds to a word, each column to a document

– Non-zero entries: score for that word in that document

In the lecture, we use tf scores … for ES8, use BM25 scores
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1
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 Terminology
– Often referred to as the Vector Space Model (VSM)

– In the VSM, words are traditionally referred to as terms

– Putting the vectors from all documents from a given corpus 
side by side gives us the so-called term-document matrix
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1
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 Retrieval
– A query can also be represented as a vector … we take  

1 for a term used in the query, and 0 for all other terms

– We measure the relevance of a document to the query 
by taking the dot product of the two vectors

Note: this is exactly the same score as in Lecture 2
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0
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 Algebra
– More formally, let us write A for the term-document 

matrix and q for the query vector

– Then the matrix-vector product qT ∙ A gives us a vector 
with the relevance scores of all the documents

Let us implement this together now
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0
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 Basic linear algebra in Python
– For standard linear algebra, we can use numpy

sudo apt-get install python3-numpy

import numpy
A = numpy.array([[1, 1, 0, 1, 0, 0], …])
q = numpy.array([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

Use numpy.array and dot for multiplication, not *

q is a row vector above = qT from the previous slide

See the code from the lecture for more example usage
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 Sparse matrices
– Most entries in a term-document matrix are zero

Storing all entries explicitly infeasible for large matrices

– Sparse-matrix representation: store only the non-zero 
entries (together with their row and column index)

(1, 0, 0), (1, 0, 1), (1, 0, 3), …, (2, 2, 3), …
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1
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 Sparse matrices
– Two principle ways to store the list of non-zero values

row-major: store row by row (sort by row index first)

column-major: store col by col (sort by col index first)

– Note: the sparse row-major representation of a term-
document matrix is equivalent to an inverted index

(1, 0, 0), (1, 0, 1), (1, 0, 3) inverted list for term 0
(1, 1, 0), (1, 1, 2), (1, 1, 3) inverted list for term 1
(1, 2, 0), (1, 2, 1), (1, 2, 2), … inverted list for term 2
(1, 3, 3), (1, 3, 4), (1, 3, 5) inverted list for term 3

(non-zero score, row index = term id, col index = doc id)
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 Sparse matrices in Python
– Not included in numpy, we have to use scipy

sudo apt-get install python3-scipy

import scipy.sparse
nz_vals = [1, 1, 1, 1, 1, 1, …]
row_inds = [0, 0, 0, 1, 1, 1, …]
col_inds = [0, 1, 3, 0, 2, 3, …]
A = scipy.sparse.csr_matrix((nz_vals, (row_inds, col_inds)))
q = scipy.sparse.csr_matrix([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

See the code from the lecture for more example usage
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References

 Textbook
Section 6.3: The vector space model for scoring

 Linear algebra in Python
– http://www.numpy.org

– http://www.scipy.org
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