Information Retrieval

 WS 2016 / 2017
Lecture 8, Tuesday December 13th, 2016 (Vector Space Model)

Prof. Dr. Hannah Bast

Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

- Organizational
- Your experiences with ES7 Web app, part 2
- Demo of some web apps

■ Contents

- Encoding last part of L7 again
- Vector Space Model (VSM) documents as vectors
- Exercise Sheet 8: re-implement your code from ES2 using the VSM, and re-evaluate benchmark

Experiences with ES7 1/4

■ Summary / excerpts

- Interesting + fun again, but more work than expected

Not much code, but a lot to understand and a lot that can go wrong + encoding issues can drive you crazy

Many of you quite busy before Christmas .. as usual

- Happy to see the end result
- Jenkins required encoding tag in Java build.xml
- Add a slide on std::wstring conversion in C++ Was discussed on the forum + I added a slide now

Experiences with ES7 2/4

- Demos
- Many of you produced some really nice web apps

Let's look at a small selection together !

- Let us also appreciate the easter eggs (or rather: xmas cookies) that were hidden in our new cities2.txt when searching for these lovely places:

Meteor
grubierF
Santas Village

Experiences with ES7 3/4

■ Spiritual vs. Solid

- One of the hallmarks of our (self-)consciousness is that our brain constantly maintains a relative stable view of the world around us (with us in it)

Note that, in reality, it's the opposite of stable: trillions of particles in a constant flux at extremely high speed, with a constant battle of life and death at all levels

- This model is extremely selective, conceptual, and biased Selective: too much information, our brains ignore most

Conceptual: we see a "person" and not a mass of cells Biased: our brain fills in the gaps for the sake of stability

Experiences with ES7 4/4

- Spiritual vs. Solid
- What's more important for your brain when seeing another living being in the world:

See the trillions of cells this person is made of, and all the biomolecular machines and motor proteins at work?

Have a good idea of the intentions of this person's mind?

- What's more important for your brain when seeing an inanimate object in the world:

See the vast amount of space between the electrons and the nuclei of the atoms the objects are made of?

Have a good idea of what happens when your body collides with it?

Vector Space Model 1/8

■ Motivation

- For this lecture, it will be useful to represent documents as vectors ... here is our running example for today:

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

- Each row corresponds to a word, each column to a document
- Non-zero entries: score for that word in that document In the lecture, we use tf scores ... for ES8, use BM25 scores

Vector Space Model 2/8

- Terminology
- Often referred to as the Vector Space Model (VSM)
- In the VSM, words are traditionally referred to as terms
- Putting the vectors from all documents from a given corpus side by side gives us the so-called term-document matrix

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

Vector Space Model 3/8

- Retrieval

$$
Q=\text { nueb survfunig }
$$

- A query can also be represented as a vector ... we take 1 for a term used in the query, and 0 for all other terms
- We measure the relevance of a document to the query by taking the dot product of the two vectors

Note: this is exactly the same score as in Lecture 2

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$	\mathbf{Q}
internet	1	1	0	1	0	0	0
web	1	0	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0
	2	1	2	3	1	1	

Vector Space Model 4/8

- Algebra

- More formally, let us write A for the term-dōcument matrix and q for the query vector
- Then the matrix-vector product q^{\top}. A gives us a vector with the relevance scores of all the documents

Let us implement this together now

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	Q
internet	1	1	0	1	0	0	0
web	1	0	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0

Vector Space Model 5/8

- Basic linear algebra in Python
- For standard linear algebra, we can use numpy
sudo apt-get install python3-numpy
import numpy
$A=$ numpy. $\operatorname{array}([[1,1,0,1,0,0], \ldots])$
$\mathrm{q}=$ numpy.array($[0,1,1,0])$
scores $=q \cdot \operatorname{dot}(A)$
print(scores)
Use numpy.array and dot for multiplication, not *
q is a row vector above $=q^{\top}$ from the previous slide
See the code from the lecture for more example usage

Vector Space Model 6/8

- Sparse matrices
- Most entries in a term-document matrix are zero

Storing all entries explicitly infeasible for large matrices

- Sparse-matrix representation: store only the non-zero entries (together with their row and column index)

$(1,0,0)$		1), (1, 0,		3),	$.$				
		5							
		D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}		
\bigcirc	internet			1	1	0	1	0	0
1	web	1	0	1	1	0	0		
2	surfing	1	1	1	$\underline{2}$	1	1		
3	beach	0	0	0	1	1	1		

Vector Space Model 7/8

- Sparse matrices

- Two principle ways to store the list of non-zero values
row-major: store row by row (sort by row index first)
column-major: store col by col (sort by col index first)
- Note: the sparse row-major representation of a termdocument matrix is equivalent to an inverted index

$(1,0,0),(1,0,1),(1,0,3)$	inverted list for term 0
$(1,1,0),(1,1,2),(1,1,3)$	inverted list for term 1
$(1,2,0),(1,2,1),(1,2,2), \ldots$	inverted list for term 2
$(1,3,3),(1,3,4),(1,3,5)$	inverted list for term 3
(non-zero score, row index = term id, col index = doc id)	

Vector Space Model 8/8

- Sparse matrices in Python
- Not included in numpy, we have to use scipy
sudo apt-get install python3-scipy
import scipy.sparse
nz_vals $=[1,1,1,1,1,1, \ldots]$
row_inds $=[0,0,0,1,1,1, \ldots]$
col_inds $=[0,1,3,0,2,3, \ldots]$
A = scipy.sparse.csr_matrix((nz_vals, (row_inds, col_inds)))
$\mathrm{q}=$ scipy.sparse.csr_matrix([0, 1, 1, 0])
scores $=$ q.dot(A) print(scores)

See the code from the lecture for more example usage

References

- Textbook

Section 6.3: The vector space model for scoring

- Linear algebra in Python
- http://www.numpy.org
- http://www.scipy.org

