
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 7, Tuesday December 6th, 2016
(Web App Vulnerabilities, Cookies, Unicode)

Overview of this lecture

 Organizational

– Your experiences with ES6 web application

 Contents

– Web applications, second part

JavaScript Continuation from last lecture

Vulnerabilities privacy, code injection, cross origin

Cookies store information across web sessions

Unicode ISO-8859-1, UTF-8, URL encoding

Exercise Sheet 7: complete your web app + make it
nice & secure + use cookies + deal with Unicode properly

2

Experiences with ES6 1/4

 Experiences + Results

– Many of you liked this exercise sheet a lot

– Time consumption ok, because split over two sheets

Some of you did the JavaScript part already now

– No errors in TIP file this time … but one in the lecture!

Anyway, we brought some cookies for all of you

– Some of you have a nice and working web app already

We will show a selection next week !

3

Experiences with ES6 2/4

 Which objective do life forms optimize?

– From the perspective of the individual consciousness:

Maximize happiness, satisfaction, etc.

– From the perspective of the genome:

Spread DNA as much as possible (the whole body and
being is just a tool for that)

Richard Dawkins "The Selfish Gene"

– From the perspective of the universe / physics:

Why and how did life emerge in the first place?

See next two slides for some interesting thoughts …

4

Experiences with ES6 3/4

 Why did life emerge in the first place?

– Abiogenesis: how life arises from non-living matter

Early theories: life must be something "spiritual", with
"spontaneous generation" (maggots arise from dead flesh)

– Miller-Urey experiment: basic elements →	23 amino acids

Earth's early atmosphere simulated: H20, CH4, NH3, H2
and heat and sparks and evaporation/condensation

– Next steps from there:

From monomers (amino acids) to polymers (proteins)

From polymers to cells

From single cells to multicellular organisms

5

Experiences with ES6 4/4

 Which objective function is optimized?

– By the second law of thermodynamics, closed systems
tend to dissipate energy until the entropy is maximized

Intuitively: a state of least structure / highest disorder

– However, with an external energy source far away (think
of earth and sun), something else happens

– Hypothesis: life forms are the best configuration to
dissipate energy from the external source … that's it

"You start with a random clump of atoms, and if you
shine light on it for long enough, it should not be so
surprising that you get a plant"

This is far from being proven … but certainly interesting
6

Vulnerabilities 1/7

 Motivation

– Web Apps are particularly vulnerable to privacy breaches

Because data + code is sent back forth between multiple
computers (foreign to each other), with so many different
layers of software and hardware in-between

– We will briefly look at three kinds of vulnerabilities today:

Access to private data

Execution of code injected by an attacker

Communication of trusted information to an untrusted site

– Top-10 web app vulnerabilities … google: OWASP Top Ten

OWASP = Open Web Application Security Project

7

Vulnerabilities 2/7

 Access to private data

– When writing or configuring a web server, take care to
serve only those files / data you want to serve

– We saw a simple problem + exploit in the last lecture

http://etna.informatik.privat:8888//etc/passwd

– This is easily fixed by carefully restricting access

For example, only serve files in a certain directory subtree

Even safer: a "whitelist" of files are served … for all other
files, return a 404 (Not Found) or a 403 (Forbidden)

8

Vulnerabilities 3/7

 Code Injection

– Exploit: make a web site execute malicious code

Example 1: enter JavaScript into search box

Click me!

Example 2: send someone a mail with a link

...index.html?user=guest<script>alert("Ha!")</script>

Note: the <script>...</script> part can be made more
unsuspicious by URL-decoding (see slide 27):

...index.html?user=guest%3C%73%63%72%69%70...

9

Vulnerabilities 4/7

 Code Injection

– Exploit: make a web site execute malicious code

Example 3: post to forum with some script in it

I have a question<script>... JavaScript code that sends
user info by mail to evil person ...</script>

Note: The <script>...</script> will not show on the website,
but code will be executed by any client viewing the post

JS code could also open Gmail Tab and inspect private mail

– This can be fixed by carefully checking the content that is
dynamically added to a webpage

ES7: if you don't pay attention, strange things might happen

10

Vulnerabilities 5/7

 The Same-Origin-Policy (SOP)

– Domain + port of client and server URL must be identical

http://etna.informatik.privat:8888/search.html

http://etna.informatik.privat:8888/?q=zurich

– To understand why, consider the following scenario:

You somehow get redirected to an evil site that looks just
like your banking website, e.g. http://www.postbamk.de

Without the same-origin-policy, the evil site could now
communicate with the bank server like the real site

Worse: with stolen session cookie, evil person could do
anything in your name without you even participating

11

Vulnerabilities 6/7

 CORS = Cross-Origin Resource Sharing

– When JavaScript requests a resource from a different
host+port (than the website on which the script is
executed), the following header is added to the request:

Origin: http://<host name>:<port>

– The result (think: JSON) then must be augmented by the
following header

Access-Control-Allow-Origin: http://<host name>:<port>

– The website can access the result if and only if both host
name and port match exactly

– For a public service, the result can also be returned with

Access-Control-Allow-Origin: *
12

Vulnerabilities 7/7

 Exceptions to the Same-Origin-Policy (SOP)

– JavaScript can be loaded from anywhere

That way we could use jQuery without downloading it

<script src="http://code.jquery.com/jquery1.10.2.js">

– Seemed reasonable at the time, because in HTML,
objects like images could also be loaded from anywhere

– However, this allows security hacks like JSONP, which
dynamically adds <script>myFct("…")</script> to the
HTML tree, which lets myFct do arbitrary things with "…"

A hack to circumvent SOP … which became a standard

13

Cookies 1/5

 Basic mechanism

– A cookie is simply a string associated with a web page
that is stored on the client's computer

Each client has it's own cookie

Typically used for user data and preferences

– A cookie can contain any contents, but the convention is
that it contains a sequence of key-value pairs, separated
by semicolons, for example:

user=cookie-monster; prefers=kekse

– Implementation in JavaScript is very simple, just read and
write this string via the variable document.cookie

14

Cookies 2/5

 Adding key-value pairs to a Cookie

– To add a key-value pair, just write

document.cookie = "user=cookie-monster";

– Multiple assignments add to the string … weird but true

document.cookie = "user=cookie-monster";
document.cookie = "prefers=kekse";

– To overwrite the value for a key, just write again

document.cookie = "prefers=kekse";
document.cookie = "prefers=kruemel";

View in browser: F12 → Application → Storage →	Cookies

15

Cookies 3/5

 Getting the value for a particular key

– In raw JavaScript, need some string processing:

var cookies = document.cookie.split(";");
for (var i = 0; i < cookies.length; i++) {

var args = cookies[i].replace(/\s/g,"").split("=");
if (args[0] == "user") alert("Hi " + args[1] + " !!!");

}

16

Cookies 4/5

 Different kinds of cookies

– Chocolate chip cookie

Accidentally developed by Ruth Wakefield in 1930

– Session cookie … lasts as long as your browser is open

user=cookie-monster

– Persistent cookie … lasts until the specified date

user=cookie-monster; expires=Wed 04 Dec 2013 17:45

– Third-party cookies … from JavaScript from other domains

Beware: these often give access to sensitive information

17

Cookies 5/5

 Using js-cookie … https://github.com/js-cookie/js-cookie

– Setting a cookie

Cookies.set("user", "cookie-monster");

– Value of a cooke

var user = Cookies.get("user");

– Removing a cookie

Cookies.remove ("user");

– Cookie with expiry date (10 days from now)

Cookies.set("user", "cookie-monster", { expires: 10});

18

Unicode 1/13

 Motivation

– To represent text in binary, we need a standard for how to
represent the characters of the alphabet, numbers, etc.

– For a very long time, this standard was ASCII :

1 Byte per symbol = can represent 256 different symbols

– Obviously there are more than 256 symbols in the world

Chinese alone has (tens of) thousands of different symbols

19

Unicode 2/13

 Solution before Unicode

– Use the ASCII codes 0 – 127 for common symbols,
which (almost) everybody needs

a-z A-Z 0-9 () [] { } , . : ; " ' …

ASCII codes 0 – 31 used for control characters

– For the ASCII codes 128 – 255, have (many) different
variants, depending on the context

For example, ISO-8859-1: use the codes to encode all
the funny characters from most European languages

à á â ã ä å ç è é ë ì í î ï ð ñ ò ó ô õ ö ø …

– Problem: if you need more than one variant, you need
to switch the encoding in the middle of the document

20

Unicode 3/13

 The Unicode solution

– Simply assign a unique number, called code point, to
(almost) every character / symbol in the world, e.g.

a : 97 (hex = 61)
A : 65 (hex = 41)
ä : 228 (hex = E4)
α : 945 (hex = 03B1)
€ : 8364 (hex = 20AC)
 : 128512 (hex = 1F600)

– Unicode knows 1,114,112 code points (hex: 0 .. 10FFFF)

Note: 1 Byte not enough, and 2 Bytes also not enough

21

Unicode 4/13

 UTF = Unicode Transformation Standard

– There are different schemes for how to actually
represent these code points in binary

– UTF-32: always use 4 bytes per code point

Enough for all 1,114,112 known code points

– UTF-16: use 2 bytes for the common code points,
and 4 bytes for the others … used for String in Java

– UTF-8: use 1 byte for the very common code points,
and 2 or 3 or 4 bytes for the others … see next 2 slides

UTF-16 and UTF-8 are variable-byte encodings

22

Unicode 5/13

 Details of UTF-8

– 1 Byte: Code point in [0, 127] = xxxxxxx

UTF-8 code: 0xxxxxxx 7 Bits

– 2 Bytes: Code point in [128, 2047] = yyyxxxxxxxx

UTF-8 code: 110yyyxx 10xxxxxx 11 Bits

– 3 Bytes: Unicode in [2048, 65535] = yyyyyyyyxxxxxxxx

UTF-8 code: 1110yyyy 10yyyyxx 10xxxxxx 16 Bits

– 4 Bytes: Unicode in [65536, 221 - 1] = zzzzzyyyyyyyyxxxxxxxx

UTF-8 code: 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx 21 Bits

In principle, this could continue with 5 bytes and 6 bytes,
but 221 ≈ 2M is enough for the 1.1M Unicode code points

23

Unicode 6/13

 UTF-8 has the following nice properties

– ASCII compatible = a string of characters with ASCII
codes < 128 is the same in ASCII as in UTF-8

So old C / C++ code only fails on the special characters

– ISO-8859-1 compatible = characters with code 1xyyyyyy
have the 2-byte UTF-8 encoding 1100001x 10yyyyyy

– Only rarely used characters need more than 2 bytes

– Easy to decode: codes start and end at byte boundaries

– Can decode starting from anywhere within a string

Just move left to the next byte not starting with 10

24

Unicode 7/13

 Some more properties of UTF-8

– In a multi-byte UTF-8 character all bytes are ≥ 128, and
vice versa such bytes occur only for multi-byte characters

– The number of leading 1s in the first byte of a multi-byte
character is equal to the number of bytes of its code

– For every Unicode in [0, 221 - 1] there is exactly one
valid UTF-8 multi-byte sequence

– But vice versa not all multi-byte sequences are valid UTF-8

For example 1100000x 10xxxxxx is not valid

Should be encoded with 1 byte: 0xxxxxxx

25

Unicode 8/13

 URL decoding and encoding, motivation

– In a URL, only a restricted character set is allowed:

a-z A-Z 0-9 $ % / - _ . + ! * … and a few more

In particular, not allowed: space, ä, ã, â, …

– Arguments of GET request are part of the URL

In particular, the ?q=... part of your web app for ES6

For ES7 (city search), this part can contain arbitrary
characters, in particular umlauts as in München

26

Unicode 9/13

 URL decoding and encoding, realization

– Special characters are encoded by a % followed by the
code in hex-decimal … for example:

If encoding of web page is UTF-8

ä : UTF-8 code C3A4  URL-encoded as %C3%A4

If encoding of web page is ISO-8859-1:

ä : ISO-8859-1 code E4  URL-encoded as %E4

27

Unicode 10/13

 Encoding in files

– All modern editors let you choose the encoding

– To view the byte-wise contents of a file, independent
of it's encoding use the Linux tool xxd or xxd –b

Inside an IDE, Text Editor, or Console what you see is
already an interpretation of the contents of the file,
assuming a certain encoding, e.g. UTF-8 or ISO-8859-1

– Beware: when you type or print something on the
terminal, the encoding used by the terminal is relevant

This can usually be changed easily in the menu

28

Unicode 11/13

 Encoding in C++

– In C++, there is std::string and std::wstring

// std::string = array of char (char = 1 byte)
std::string s = "\xc3\xa4"; std::cout << s; prints ä

// std::wstring = array of wchar_t (Unicodes)
std::wcout.sync_with_stdio(false);
std::imbue(std::locale(""));
std::wstring w = L"ä"; std::wcout << w; prints ä

// Convert between std::string and std::wstring
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;

std::string utf8string = conv.to_bytes(L"ä"); { c3, a4 }
std::wstring wstring = conv.from_bytes("ä"); { U+00e4 }

29

Unicode 12/13

 Encoding in Java

– In Java, there is String and byte[]

// String = array of char (char = 2 bytes)
"ä".length()); 1 (U+00E4)

// Unicodes ≥ 216 are UTF-16 encoded
"".length(); 2 (U+1F600)
"".charAt(0); U+0001
"".charAt(1); U+F600

// Convert between String and byte array
byte[] b = "ä".getBytes("UTF-8"); { 0xc3, 0xa4 }
new String(b, "UTF-8")).charAt(0); ä (U+00E4)

30

Unicode 13/13

 Encoding in Python3

– Python has both "byte array" strings and Unicode strings

// Byte array strings = b"…"
print(b"\xc3\xa4") ä on UTF-8 terminal
print(b"\xc3\xa4") Ã¤ on ISO terminal
print(b"ä") not allowed in Python3

// Unicode strings = u"…"
print(len(u"ä")) prints 1

// Convert between the two
b"\xc3\xa4".decode("UTF-8") u"ä"
b"\xc3\xa4".decode("LATIN1") u"Ã¤"
u"ä".encode("UTF-8") b"\xc3\xa4"

31

References

 CORS

– http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

– http://en.wikipedia.org/wiki/Cross-site_scripting

 Cookies

– http://en.wikipedia.org/wiki/HTTP_cookie

– http://www.w3schools.com/js/js_cookies.asp

 UTF-8, URL-encoding and -decoding

– http://en.wikipedia.org/wiki/UTF-8

– http://www.utf8-chartable.de

– http://www.w3schools.com/tags/ref_urlencode.asp

32

