Information Retrieval
WS 2016 / 2017

Lecture 5, Tuesday November 2219, 2016
(Fuzzy Search, Edit Distance, g-Gram Index)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

= Organizational

— Experiences with ES4 Compression, Codes, Entropy

m Contents
— Fuzzy search type breifurg, find freiburg
— Edit Distance a standard similarity measure
— Q-gram Index index for efficient fuzzy search

Exercise Sheet 5: implement error-tolerant prefix search
using a g-gram index and prefix edit distance

Experiences with ES4 1/3

m Summary / excerpts

— Some liked it, for some it was OK, some didn't like it
"Very elegant explanations ... no problems with exercises"
"Some natural frustration ... but an enjoyable challenge”
"Did not enjoy ... don't like mathematical proofs a lot"

— Very helpful to understand the concepts from the lecture

— Help in the forum was much appreciated

— Looking forward to the master solution (it's there!)

— Looking forward to coding exercises again

— Entropy of human DNA is 7.13 on average according to
https://www.hindawi.com/journals/mpe/2012/132625/tab1

Experi i RSN
periences with ES4 2/3 7 ==
o -
m Proof sketch for Exercise 4.2 romione oo 4)
— Show that Gollum is optimal for p, = (1 — p)¥ 1 "“\; =%
D = U e =) R L P B
Qo 2= +px< A TS AP e
D2 P = @%E,—-J“ Qgﬂz% + Logo (i—p) M= 77
o | S 2 T I5 = %2’
@ Lx:Z’y[M—S ’FTQ’QSQ_NU"':(“i X[pn + Rog, M + Z
< fwxx?i + \Q_GQQ_‘/’{\‘D—'%— \Q/@g\%/&/\i+/§
< O
S
E_L — <
e < = Zepelx = M v Zapx
=

X =4

o
Experiences with ES4 3/3 O=P—

m Your DNA

— The nucleotides of your DNA are asymmetric, with a
phosphate group attached to the 5' side of the ring

— Synthesizing only works in the 5'-to-3' direction, because
making bonds in that direction is more energy efficient

— However, if one strand of DNA goes in the 5'-to-3'
direction, the other must go in the 3'-to-5' direction

— So how does the cell manage to copy both strands?

The answer is quite amazing

— You are quite a machine ... on the biomolecular level

— More about that on future sheets

Fuzzy Search 1/6

m Problem setting
— Given a "dictionary" = a list of "names" of any kind
For ES5, a list of 181,296 cities in Western Europe

— For a given query, find matching names from that dict.

Query: frei Match: freiburg prefix search
Query: fr*rg Match: freiburg wildcard search
Query: breifurg Match: freiburg fuzzy search

— Similar challenges as for our search so far:
Challenge 1: good model of what matches

Challenge 2: preprocess the input (= build a suitable
index), so that we find the matching names fast

Fuzzy Search 2/6

m Possible origins for the dictionary
— Popular queries extracted from a query log
Basis for Google's query-suggestion feature
— Words + common phrases from a text collection

Extracting common phrases from a given text collection
is an interesting problem by itself, however, not one we
will deal with in this course

— A list of names of entities

For example: person names, movie titles, places,
street addresses, ...

Fuzzy Search 3/6

m Combining matching and search
— One could simply search for the top match, for example:
Type: freib Search: freiburg
— Or one could search for several matches
Type: freib Search: freiburg OR freibach OR ... OR ...

— In todays lecture, we will only look at the problem of finding
matching names in a list of names

The search part is also interesting when the number of
matching strings is very large; then a simple OR of a lot
of strings will be too slow and we need better solutions

Fuzzy Search 4/6

m Simple solution

— Iterate over all strings in the dictionary, and for each
check whether it matches

— This is what the Linux commands grep and agrep do
grep —x uni.* <file>
grep —x un.*ity <file>
agrep —x —2 univerty <file>
All matching lines in <file> will be output
The option —x means match whole line (not just a part)

The option —2 means allow up to two "errors" ... next slide

10

Fuzzy Search 5/6

m Simple solution, check match of single string
— Given a query g and a string s
— Prefix search: easy-peasy

Just compare g and the first |q| characters of s ... can be
accelerated by finding the first match with a binary search

— Wildcard search: also easy if only one *

If g = qy*qg,, check that [s| > |gy| + |g;| and then
compare the first |q,| characters of s with q; and the
last |g,| characters of s with g,

— Fuzzy search: more complicated

Compute edit distance between g and s ... slides 11 — 16

Fuzzy Search 6/6

m Simple solution, time complexity

— The time complexity is obviously n - T, where
n = #records, T = time for checking a single string

— For fuzzy search, T = 1ps ... find out yourself in ES5

— In search, we always want interactive query times
Respond times feel interactive until about 100ms

— So the simple solution is fine for up to ® 100K records

— For larger input sets, we need to pre-compute something

We will build a q-gram index ... slides 20 — 26

11

12

Viladimir

Edit distance 1/6 Levenshtein

*1935, Russia

m Definition ... aka Levenshtein distance, from 1965
— Definition: for two strings x and y

ED(x, y) := minimal number of tra'fo's to get from x to y

— Transformations allowed are:
insert(i, ¢) : insert character c at position i
delete(i) : delete character at position i

replace(i, c) : replace character at position i by c

_ /JD B 3 %) :S/\M @
x @ Cg)oj P‘k L> RECACE (.i IE) \9Z,<1_/& E0 CX\@)> z L,) ?
oL OF) REPLACE (z.L) “

B) OETF 2 TwvseeT(H,E)
o = Lo =D D ReprLace (s, D)

13

Edit distance 2/6

m Some simple notation

— The empty word is denoted by €

— The length (#characters) of x is denoted by |x|

— Substrings of x are denoted by x[i..j], where 1 <i <j < [X|
m Some simple properties

— ED(x, y) = ED(y, x)

— ED(x, €) = [X]

— ED(X, y) = abs(|x]| - |y|) abs(z)=z207z: -z

— ED(x y) < ED(x[1..n-1], y[1.m-1]) + 1 n=|x|, m=|y|
e DOD BLOE

/Doci_/\/_:o/ _/—\/___/,_J

=" =3

14

DOMT PWWYW o
W _(LCB)

_ b % W& IS
m Recursive formula Lot Tounirey

Edit distance 3/6

— For |[x|] > 0 and |y| > 0,\ED(X, y) is the minimum of
(1a) ED(x[1..n], y[1.m-1]) + 1
(1b) ED(x[1..n-1], y[1..m]) + 1
(1c) ED(x[1..n-1], y[1..m-1]) + 1 if x[n] # y[m]
(2) ED(x[1..n-1], y[1..m-1]) if x[n] = y[m]
— For |x| = 0 we have ED(x, y) = |y|

— For |y| = 0 we have ED(X, y) = |X|

For a proof of that formula, see e.g. Algorithmen und
Datenstrukturen SS 2015, Lecture 113, slides 18 — 23

)

15

Edit distance 4/6

m Algorithm for computing ED(X, y)

— The recursive formula from the previous slide naturally
leads to the following dynamic programming algorithm

— Takes tim :

akes time and sp>ace oO(Ix| - Iy

- gb{@’&/@@ﬁ”

© 1[3 4 S/E/DVD/@LOE(D3

414

3 Y

e ED (DooF BLOED)
BE]/

1T
2
3

<

TG00 m
XWNP

2 3
2 2
3 2
4 3

“

16

Edit distance 5/6

m Prefix edit distance
— The prefix edit distance between x and y is defined as

PED(X, y) = min,, ED(x, y') where y' is a prefix of y

— For example
PED(uni, university) = 0 ... butED =7
PED(uniwer, university) = 1 ...butED =5

— Important for fuzzy search-as-you type suggestions

By now, all the large web search engines have this
feature, because it is so convenient for usability

17

Edit distance 6/6

m Computation of the PED
— Compute the entries of the |x| - |y| table, just as for ED

— The PED is just the minimum of the entries in the last row

— Important optimization: when |x| << |y| and you only
want to know if PED(x, y) < & for some given 0:

Enough to compute the first |x| + & + 1 columns ... verify !
s ’FQB—Q%Q\QQ Oix/g//a Oy S =2

g o L22ASc ?_y/_d_%/\‘:ﬁ_&/v\ S

7[; ;’_— Goe fo Qoc bapowm
7 3 s pandt

5 dB@33EPRERA

_ AN MO <X TTHOSE = @E@(Pn‘so)
0 (Fed , F) : | TeEIBLRG)
ED(FIBO [FREIBO) =2

20 (8L [TRE()

18

g-Gram Index 1/7 o=

m Definition of a g-gram
— The g-grams of a string are simply all substrings of length g
freiburg: fre, rei, eib, ibu, bur, urg
The number of g-grams of a string x is exactly |x| -q + 1

— For fuzzy search, we will pad the string with g — 1 special
symbols (we use $) in the beginning and in the end

freiburg — $$freiburg$$
3-grams: $$f, $fr, fre, rei, eib, ibu, bur, urg, rg$, g$$
The number is then x| + g — 1, where x is the original string

We will see in a minute, why that padding is useful

19

g-Gram Index 2/7

m Definition of a g-gram index

— For each g-gram store an inverted list of the strings (from
the input set) containing it, sorted lexicographically

$fr ;. fraberg, frallach, freiburg, freiberg, frouville, ...

ibu : biburg, freiburg, garcibuey, seibuttendorf, ...

As usual, store ids of the strings, not the strings themselves

Note: very similar to an inverted index, just with g-grams
instead of words

Let's adapt our code from Lecture 1 to g-grams

g-Gram Index 3/7

m Space consumption
— Each record x contributes |x| + O(1) ids to the inverted lists

— The total number of ids in the lists is hence about the
number of characters (not words) in the dictionary

— If we use 4 bytes per id, the index would hence be at least
four times bigger than the original dictionary

— This can be reduced significantly using compression

For ES5, it is fine to store the lists uncompressed

20

21

g-Gram Index 4/7

m Fuzzy search with a g-gram index, using ED
— Consider x and y with ED(x, y) < 0

— Intuitively: if x and y are not too short, and 0 is not too
large, they will have one or more g-grams in common

— Example: x = HILLARY, y = HILARI
$$HILLARY$$ — $$H, $HI, HIL, ILL, LLA, LAR, ARY, RY$, Y$$
$$HILARI$S — $$H, $HI, HIL, ILA, LAR, ARI, RIS, I$$
number of g-grams in common = 4

Note: the padding in the beginning gives us two additional
3-grams in common (because no mistake in first letter)

22

soe= BLLaweY | ologyuniis sevsy

g-Gram Index 5/7 5= HLARL |y =aguise 188

m Fuzzy search with a g-gram index, using ED
— Formally: let x' and y' be the padded versions of x and y
Then: comm(x', y') = max(|>?|, |5|) -1-(0 - 1) - cg| -3
Example from slide before: |x| =7, |y| =6,0=2,q=3
Hence comm(x’, y') Z; and in the example comm = 4

Verify: in the worst case, comm(x', y') = 3 can happen

— Proof: consider the longer string, which has max(|x|, |y|) +
g — 1 g-grams ... because of the left and right $ padding

Then one tra'fo (insert / delete / replace) changes at most g
g-grams, and hence 0 tra'fos affect at most 0 - g g-grams

23

g-Gram Index 6/7

m Query algorithm, using ED (for PED: analogous)
— Given a query x and a g-gram index for the input strings
— Compute g-grams of x' and fetch their inverted lists
For example: X = HILARI, X' = $$HILARI$$
Fetch lists for: $$H, $HI, HIL, ILA, LAR, ARI, RI$, 1$$

— Merge these lists and keep track of which record contains how
many g-grams ... see TIP file on the Wiki

— For each record y in the merge results, check whether the
count is = max(|x|, |ly])-1-(0—-1) - g

If no: discard this y, we know that ED(X, y) > 0
If yes: compute ED(X, y) and check if ED(x, y) < 0

24

g-Gram Index 7/7

m Fuzzy prefix search

— Use the same algorithm, but with a different bound

— Assume that PED(x, y) < 0

— Let x' and y' be x and y with g — 1 times $ to the left only
Padding on the right makes no sense for prefix search

— Then we have: comm(x', y') = |x| —-q-0
Note that for d = 1, thisis = 1 only for |x| > g

— Proof: Consider x, which has exactly [x| g-grams

Then one tra'fo (insert / delete / replace) changes at most g
g-grams, and hence 0 tra'fos change at most 0 - g g-grams

25

References

m Textbook

Section 3: Tolerant Retrieval, in particular:
Section 3.2: Wildcard queries
Section 3.3: Spelling correction

m Wikipedia

http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.org/wiki/Approximate string matching

http://en.wikipedia.org/wiki/Levenshtein distance

