
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 5, Tuesday November 22nd, 2016
(Fuzzy Search, Edit Distance, q-Gram Index)



Overview of this lecture

 Organizational

– Experiences with ES4 Compression, Codes, Entropy

 Contents

– Fuzzy search type breifurg, find freiburg

– Edit Distance a standard similarity measure

– Q-gram Index index for efficient fuzzy search

Exercise Sheet 5: implement error-tolerant prefix search 
using a q-gram index and prefix edit distance

2



Experiences with ES4   1/3

 Summary / excerpts

– Some liked it, for some it was OK, some didn't like it

"Very elegant explanations … no problems with exercises" 

"Some natural frustration … but an enjoyable challenge" 

"Did not enjoy … don't like mathematical proofs a lot"

– Very helpful to understand the concepts from the lecture

– Help in the forum was much appreciated

– Looking forward to the master solution (it's there!)

– Looking forward to coding exercises again

– Entropy of human DNA is 7.13 on average according to

https://www.hindawi.com/journals/mpe/2012/132625/tab1
3



Experiences with ES4   2/3

 Proof sketch for Exercise 4.2

– Show that Gollum is optimal for px = (1 – p)x – 1 · p  

4



Experiences with ES4   3/3

 Your DNA

– The nucleotides of your DNA are asymmetric, with a 
phosphate group attached to the 5' side of the ring

– Synthesizing only works in the 5'-to-3' direction, because 
making bonds in that direction is more energy efficient

– However, if one strand of DNA goes in the 5'-to-3' 
direction, the other must go in the 3'-to-5' direction

– So how does the cell manage to copy both strands?

The answer is quite amazing

– You are quite a machine … on the biomolecular level 

– More about that on future sheets

5



Fuzzy Search   1/6 

 Problem setting

– Given a "dictionary" = a list of "names" of any kind

For ES5, a list of 181,296 cities in Western Europe

– For a given query, find matching names from that dict.

Query: frei Match: freiburg prefix search
Query: fr*rg Match: freiburg wildcard search
Query: breifurg Match: freiburg   fuzzy search

– Similar challenges as for our search so far:

Challenge 1: good model of what matches

Challenge 2: preprocess the input (= build a suitable 
index), so that we find the matching names fast

6



Fuzzy Search   2/6 

 Possible origins for the dictionary

– Popular queries extracted from a query log

Basis for Google's query-suggestion feature

– Words + common phrases from a text collection

Extracting common phrases from a given text collection
is an interesting problem by itself, however, not one we 
will deal with in this course

– A list of names of entities

For example: person names, movie titles, places, 
street addresses, …

7



Fuzzy Search   3/6 

 Combining matching and search

– One could simply search for the top match, for example:

Type: freib Search: freiburg

– Or one could search for several matches

Type: freib Search: freiburg OR freibach OR … OR …

– In todays lecture, we will only look at the problem of finding 
matching names in a list of names

The search part is also interesting when the number of 
matching strings is very large; then a simple OR of a lot 
of strings will be too slow and we need better solutions

8



Fuzzy Search   4/6

 Simple solution

– Iterate over all strings in the dictionary, and for each 
check whether it matches

– This is what the Linux commands grep and agrep do

grep –x uni.* <file>

grep –x un.*ity <file>

agrep –x –2 univerty <file>

All matching lines in <file> will be output 

The option –x means match whole line (not just a part)

The option –2 means allow up to two "errors" … next slide

9



Fuzzy Search   5/6

 Simple solution, check match of single string

– Given a query q and a string s

– Prefix search:  easy-peasy

Just compare q and the first |q| characters of s … can be   
accelerated by finding the first match with a binary search

– Wildcard search:  also easy if only one *

If q = q1*q2, check that |s| > |q1| + |q2| and then 
compare the first |q1| characters of s with q1 and the 
last |q2| characters of s with q2

– Fuzzy search:  more complicated

Compute edit distance between q and s … slides 11 – 16  

10



Fuzzy Search   6/6

 Simple solution, time complexity

– The time complexity is obviously n · T, where

n = #records, T = time for checking a single string

– For fuzzy search, T ≈ 1µs ... find out yourself in ES5

– In search, we always want interactive query times

Respond times feel interactive until about 100ms

– So the simple solution is fine for up to ≈ 100K records

– For larger input sets, we need to pre-compute something

We will build a q-gram index … slides 20 – 26 

11



Edit distance   1/6

 Definition … aka Levenshtein distance, from 1965

– Definition: for two strings x and y

ED(x, y) := minimal number of tra'fo's to get from x to y

– Transformations allowed are:

insert(i, c)  : insert character c at position i

delete(i) : delete character at position i

replace(i, c) : replace character at position i by c

12

Vladimir
Levenshtein

*1935, Russia 



Edit distance   2/6

 Some simple notation

– The empty word is denoted by ε

– The length (#characters) of x is denoted by |x|

– Substrings of x are denoted by x[i..j], where 1 ≤ i ≤ j ≤ |x|

 Some simple properties

– ED(x, y) = ED(y, x)

– ED(x, ε) = |x|

– ED(x, y) ≥ abs(|x| - |y|)                   abs(z) = z ≥ 0 ? z : -z

– ED(x, y) ≤ ED(x[1..n-1], y[1..m-1]) + 1      n = |x|, m = |y|

13



Edit distance   3/6

 Recursive formula

– For |x| > 0 and |y| > 0, ED(x, y) is the minimum of

(1a) ED(x[1..n], y[1..m-1]) + 1

(1b) ED(x[1..n-1], y[1..m]) + 1

(1c) ED(x[1..n-1], y[1..m-1]) + 1     if x[n] ≠ y[m]

(2) ED(x[1..n-1], y[1..m-1])   if x[n] = y[m]

– For |x| = 0 we have ED(x, y) = |y|

– For |y| = 0 we have ED(x, y) = |x|

For a proof of that formula, see e.g. Algorithmen und 
Datenstrukturen SS 2015, Lecture 11a, slides 18 – 23 

14



Edit distance   4/6

 Algorithm for computing ED(x, y)

– The recursive formula from the previous slide naturally 
leads to the following dynamic programming algorithm

– Takes time and space Θ(|x| · |y|)

15



Edit distance   5/6

 Prefix edit distance

– The prefix edit distance between x and y is defined as

PED(x, y) = miny' ED(x, y') where y' is a prefix of y

– For example

PED(uni, university) = 0 … but ED = 7

PED(uniwer, university) = 1 … but ED = 5

– Important for fuzzy search-as-you type suggestions

By now, all the large web search engines have this 
feature, because it is so convenient for usability

16



Edit distance   6/6

 Computation of the PED

– Compute the entries of the |x| · |y| table, just as for ED

– The PED is just the minimum of the entries in the last row

– Important optimization: when |x| << |y| and you only
want to know if PED(x, y) ≤ δ for some given δ:

Enough to compute the first |x| + δ + 1 columns … verify !

17



q-Gram Index   1/7

 Definition of a q-gram

– The q-grams of a string are simply all substrings of length q

freiburg:  fre,  rei,  eib,  ibu,  bur,  urg

The number of q-grams of a string x is exactly |x| - q + 1

– For fuzzy search, we will pad the string with q – 1 special 
symbols (we use $) in the beginning and in the end

freiburg  $$freiburg$$

3-grams: $$f, $fr, fre, rei, eib, ibu, bur, urg, rg$, g$$

The number is then |x| + q – 1, where x is the original string

We will see in a minute, why that padding is useful

18



q-Gram Index   2/7

 Definition of a q-gram index

– For each q-gram store an inverted list of the strings (from
the input set) containing it, sorted lexicographically

$fr :  fraberg, frallach, freiburg, freiberg, frouville, …

ibu : biburg, freiburg, garcibuey, seibuttendorf, …

As usual, store ids of the strings, not the strings themselves

Note: very similar to an inverted index, just with q-grams 
instead of words

Let's adapt our code from Lecture 1 to q-grams

19



q-Gram Index   3/7

 Space consumption

– Each record x contributes |x| + O(1) ids to the inverted lists

– The total number of ids in the lists is hence about the 
number of characters (not words) in the dictionary

– If we use 4 bytes per id, the index would hence be at least 
four times bigger than the original dictionary

– This can be reduced significantly using compression

For ES5, it is fine to store the lists uncompressed

20



q-Gram Index   4/7

 Fuzzy search with a q-gram index, using ED

– Consider x and y with ED(x, y) ≤ δ

– Intuitively: if x and y are not too short, and δ is not too
large, they will have one or more q-grams in common

– Example: x = HILLARY, y = HILARI

$$HILLARY$$   $$H, $HI, HIL, ILL, LLA, LAR, ARY, RY$, Y$$

$$HILARI$$     $$H, $HI, HIL, ILA, LAR, ARI, RI$, I$$

number of q-grams in common = 4

Note: the padding in the beginning gives us two additional
3-grams in common (because no mistake in first letter)

21



q-Gram Index   5/7

 Fuzzy search with a q-gram index, using ED

– Formally: let x' and y' be the padded versions of x and y

Then: comm(x', y') ≥ max(|x|, |y|) – 1 – (δ – 1) · q 

Example from slide before: |x| = 7, |y| = 6, δ = 2, q = 3

Hence comm(x', y') ≥ 3 … and in the example comm = 4

Verify: in the worst case, comm(x', y') = 3 can happen

– Proof: consider the longer string, which has max(|x|, |y|) + 
q – 1 q-grams … because of the left and right $ padding

Then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos affect at most δ · q q-grams

22



q-Gram Index   6/7

 Query algorithm, using ED (for PED: analogous)

– Given a query x and a q-gram index for the input strings

– Compute q-grams of x' and fetch their inverted lists

For example:   x = HILARI, x' = $$HILARI$$

Fetch lists for: $$H, $HI, HIL, ILA, LAR, ARI, RI$, I$$ 

– Merge these lists and keep track of which record contains how 
many q-grams … see TIP file on the Wiki

– For each record y in the merge results, check whether the 
count is ≥ max(|x|, |y|) – 1 – (δ – 1) · q

If no: discard this y, we know that ED(x, y) > δ

If yes: compute ED(x, y) and check if ED(x, y) ≤ δ

23



q-Gram Index   7/7

 Fuzzy prefix search

– Use the same algorithm, but with a different bound

– Assume that PED(x, y) ≤ δ

– Let x' and y' be x and y with q – 1 times $ to the left only

Padding on the right makes no sense for prefix search

– Then we have: comm(x', y') ≥  |x| – q · δ

Note that for δ = 1, this is ≥ 1 only for  |x| > q

– Proof: Consider x, which has exactly |x|  q-grams

Then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos change at most δ · q q-grams

24



References

 Textbook

Section 3: Tolerant Retrieval, in particular:

Section 3.2: Wildcard queries

Section 3.3: Spelling correction

 Wikipedia

http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.org/wiki/Approximate_string_matching

http://en.wikipedia.org/wiki/Levenshtein_distance

25


