Information Retrieval

 WS 2016 / 2017
Lecture 4, Tuesday November 15th, 2016

 (Compression, Codes, Entropy)Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

- Organizational
- Your experiences with ES3 Efficient List Intersection

■ Compression

- Motivation
- Codes
- Entropy
- Exercise Sheet 4: three nice proofs \rightarrow part of Shannon's theorem + optimality of Golomb + size of inverted index

We take a break from implementation work this week

Experiences with ES3 1/2

■ Summary / excerpts

- Interesting exercise, many liked performance tweaking
- Less work than ES2 again
- Lack of programming practice in Java or C++
- People who started late took much longer
- Some found it hard to make an improvement
- Given code already used native arrays and "while" trick
- Some of you had large variation between runs
- Coding while watching the US election results is even worse than lack of sleep, etc.

Experiences with ES3 2/2

- Results
- Three inverted lists of different lengths

them	$1,717,305$ postings
existence	162,511 postings
bielefeld	5,257 postings

- Query them+bielefeld, list length ratio = 327

Any of galloping, skip ptrs, bin. search give large speedup

- Query existence+bielefeld, list length ratio = 31

Skipping helps, but not too much

- Query them+existence, list length ratio = 11

Skipping costs more than it helps, switch to tuned baseline

Compression 1/6

■ Motivation

- Inverted lists can become very large

Recall: length of an inverted list of a word = total
number of occurrences of that word in the collection
For example, in the English Wikipedia:
them: 1,717,305 occurrences
year: 2,052,964 occurrences
one: 4,022,417 occurrences

- Compression potentially saves space and time

Compression 2/6

■ Index in memory

- Then compression saves memory (obviously)
- Also: the index might be too large to fit into memory without compression, and with compression it does

Fitting in memory is good because reading from memory is much much much faster than reading from disk
Transfer rate from memory
$\approx 2 \mathrm{~GB} /$ second
Transfer rate from disk
$\approx 50 \mathrm{MB} /$ second

Compression 3/6

■ Index on disk:

- Then compression saves disk space (obviously)
- But it also saves query time, here is a realistic example:

Disk transfer time: $50 \mathrm{MB} /$ second
Compression rate: Factor 5
Decompression time: $30 \mathrm{MB} /$ second
Inverted list of size: 50 MB
Reading uncompressed: 1.0 seconds $\rightarrow 50 \mathrm{MB}$
Reading compressed: 0.2 seconds $\rightarrow 10 \mathrm{MB}$
Decompressing: $\quad 0.3$ seconds $\rightarrow 50 \mathrm{MB}$
Reading compressed + decompression twice faster compared to reading uncompressed

Compression 4/6

■ Gap encoding

- Example inverted list (doc ids only):
$3,17,21,24,34,38,45, \ldots, 11876,11899,11913, \ldots$
- Numbers small in the beginning, large in the end, using an int for each id would be $\mathbf{4}$ bytes per id
- Alternative: store differences from one item to next:

$$
+3,+14,+4,+3,+10,+4,+7, \ldots,+12,+23,+14, \ldots
$$

- This is called gap encoding
- Works as long as we process the lists from left to right
- Now we have a sequence of mostly (but not always) small numbers ... how do we store these in little space?

Compression 5/6

- Binary representation
- We can write number x in binary using $\left[\log _{2} x\right\rfloor+1$ bits
x binary number of bits

1	1	1
2	10	2
3	11	2
4	100	3
5	101	3

3

- This encoding is optimal in a sense ... see later slides
- So why not just (gap-)encode like this and concatenate:

$$
+3,+14,+4, \ldots \rightarrow 11,1110,100, \ldots \rightarrow 111110100 \ldots
$$

Compression 6/6

■ Prefix-free codes, definition

- Decode bit sequence from the last slide: 111110100

This could be: $\quad+3,+14,+4 \rightarrow 11,1110,100$
Could also be: $\quad+7,+6,+4 \rightarrow 111,110,100$
Or: $\quad+3,+3,+2,+4 \rightarrow 11,11,10,100$

- Problem: we have no way to tell where one code ends and the next code begins

Equivalently: some codes are prefixes of other codes

- In a prefix-free code, no code is a prefix of another

Then decoding from left to right is unambiguous !

Codes 1/4

■ Elias-Gamma ... from 1975

- Write $\left\lfloor\log _{2} x\right\rfloor$ zeros, then x in binary like on slide 9
- Prefix-free, because the number of initial zeros tells us exactly how many bits of the code come afterwards
- Code for x has a length of exactly $2 \cdot\left[\log _{2} x\right]+1$ bits

Peter Elias 1923-2001

Elias-Delta ... also from 1975

- Write $\left\lfloor\log _{2} x\right\rfloor+1$ in Elias-Gamma, followed by x in binary (like on slide 9) but without the leading 1
- Elias-Delta is also prefix-free and the length of the code length is $\left\lfloor\log _{2} x\right\rfloor+2 \log _{2} \log _{2} x+O(1)$ bits

00100010
in Elias-ganma vitraub the leadnig 1

Codes 3/4

■ Golomb (not Gollum) ... from 1966

- Comes with an integer parameter M, called modulus
- Write x as $q \cdot M+r$, where $q=x \operatorname{div} M$ and $r=x \bmod M$
- The code for x is then the concatenation of:
- q written in unary with 0s

Solomon Golomb 1932-2016

- a single 1 (as a delimiter)

- r written in binary

$$
M=16, \quad x=67=\cong_{\approx q}^{4} \cdot 16+\underbrace{3}_{=i r}
$$

Variable-Byte (VB)

- Idea: use whole bytes, in order to avoid the (expensive) bit fiddling needed for the previous schemes

VB often used in practice, for exactly that reason

- Use one bit of each byte to indicate whether this is the last byte in the current code or not
- VB is also used for UTF-8 encoding ... see later lecture

$$
x=501=3 \cdot 128+117
$$

suite a 2 bytes 1000001101110101
00000111110101
should be 501

Entropy 1/12

■ Motivation

- Which code compresses the best ?

It depends !
But on what?

- Roughly: it depends, on the relative frequency on the numbers / symbols we want to encode

For example, in natural language, an "e" is much more frequent than a "z"

So we should encode "e" with less bits than "z"

- The next slides will make this more precise

Entropy 2/12

■ Entropy

- Intuitively: the information content of a message = the optimal number of bits to encode that message
- Formally: defined for a discrete random variable X Without loss of generality range of $X=\{1, \ldots, m\}$ Think of X as generating the symbols of the message Then the entropy of X is written and defined as $H(X)=-\sum_{i} p_{i} \log _{2} p_{i} \quad$ where $p_{i}=\operatorname{Prob}(X=i)$
- Example 1: one $p_{i}=1$ all other 0 , then $H(X)=0$
- Example 2: all $p_{i}=1 / m$, then $H(X)=\log _{2} m$

$$
=-\sum_{i=1}^{m} \frac{1}{m} \cdot \log _{2} \frac{1}{m}=m \cdot \frac{1}{m} \cdot \log _{2} m
$$

Entropy 3/12

■ Shannon's source coding theorem ... from 1948

- Let X be a random variable with finite range
- For an arbitrary prefix-free (PF) encoding, let L_{x} be the length of the code for $x \in$ range (X)
(1) For any PF encoding it holds: $E L_{X} \geq H(X)$
(2) There is a PF encoding with: $E L_{X} \leq H(X)+1$
where \mathbf{E} denotes the expectation
In words: no code can be better than the entropy, and there is always a code as good

Entropy 4/12

- Central Lemma ... to prove the source coding theorem
- Denote by L_{i} the length of the code for the i-th symbol, then
(1) Given a PF code with lengths $L_{i} \Rightarrow \Sigma_{i} 2^{-L i} \leq 1$
(2) Given L_{i} with $\Sigma_{i} 2^{-L_{i}} \leq 1 \Rightarrow$ exists PF code with length L_{i}
- Note: $\Sigma_{\mathrm{i}} 2^{-\mathrm{Li}} \leq 1$ is known as "Kraft's inequality"
- Intuitively: not all L_{i} can be small \ldots small $L_{i} \rightarrow$ large $2^{-L i}$

For example, the lemma says that a prefix-free code where three $L_{i}=1$ is not possible, because $2^{-1}+2^{-1}+2^{-1}>1$

Entropy 5/12

- Proof of central lemma, part (1)

- Show: given PF code with lengths L_{i} then $\Sigma_{i} 2^{-L i} \leq 1$
- Consider the following random experiment:

Generate a random binary sequence, and pick each bit independent from all other bits

Stop when you have a valid code, or when no more code is possible ... well-defined for PF codes only !

- Let $C_{i}=$ the event that code i is generated $\rightarrow \operatorname{Pr}\left(C_{i}\right)=2^{-L i}$
- Then $\operatorname{Pr}\left(\mathrm{C}_{1}\right)+\ldots+\operatorname{Pr}\left(\bar{C}_{m}^{-L-}\right)=\operatorname{Pr}\left(C_{1} \cup \ldots \cup C_{m}\right) \leq 1$
- And the left-hand side is just $\Sigma_{i} 2^{-L i}$

Entropy 6/12

- Proof of central lemma, part (2)

Mis is called

- To show: L_{i} with $\Sigma_{i} 2^{-L i} \leq 1 \Rightarrow$ exists PF code with lengths L_{i}
- Complete binary tree of depth $M=\max L_{i} \ldots$ has 2^{M} leaves
- Mark all left edges 0, and all right edges 1
- Consider the code lengths L_{i} in sorted order, smallest first
- Then iterate: pick subtree with 2^{M} - Li leaves that does not overlap with already picked subtrees ... path to that subtree gives code for symbol i and sum $2^{M-L_{i}}=2^{M} \cdot \Sigma_{i} 2^{-L i} \leq 2^{M}$

$$
\begin{array}{ll}
L_{1}=1, & 2^{n-L_{i}}=4, \text { code }=0 \\
L_{2}=2, & 2^{n-L_{2}}=2, \text { code }=10 \\
L_{3}=3, & 2^{n-L_{3}}=1, \text { code }=110 \\
L_{4}=3, & 2^{n-L_{4}}=1, \text { code }=111
\end{array}
$$

Entropy 7/12

■ Proof of source coding theorem, part (1)

- To show: for any PF encoding $E L_{X} \geq H(X)$
- By definition of expectation: $E L_{X}=\Sigma_{i} p_{i} \cdot L_{i}$
- By Kraft's inequality: $\Sigma_{i} 2^{-L i} \leq 1$
- Using Lagrange, it can be shown that, under the constraint (2), (1) is minimized for $L_{i}=\log _{2} 1 / p_{i}$
- Then $E L_{X}=\Sigma_{i} p_{i} \cdot L_{i} \geq \Sigma_{i} p_{i} \cdot \log _{2} 1 / p_{i}=H(X)$

This is Exercise 1 from ES4
Perfect exercise to practice Lagrangian optimization and deepen understanding of the source coding theorem

Entropy 8/12

■ Proof of source coding theorem, part (2)

- Show: there is a PF encoding with $E L_{X} \leq H(X)+1$
- Let $L_{i}=\left\lceil\log _{2} 1 / p_{i}\right\rceil$, then $\Sigma_{i} 2^{-L i} \leq 1$

Note that rounding is necessary because the code length must be an integer, and that we need to round upwards, so that Kraft's inequality holds

- By the central lemma, part (2), there then exists a PF code with code lengths L_{i}
- By definition of expectation: $E L_{X}=\Sigma_{i} p_{i} \cdot L_{i}$
- Hence $E L_{X}=\Sigma_{i} p_{i} \cdot\left\lceil\log _{2} 1 / p_{i}\right\rceil \leq \Sigma_{i} p_{i} \cdot\left(\log _{2} 1 / p_{i}+1\right)$

$$
=\Sigma_{i} p_{i} \cdot \log _{2} 1 / p_{i}+\Sigma_{i} p_{i}=H(X)+1
$$

Entropy 9/12

■ Entropy-optimal codes

- Consider a PF code with $L_{i}=$ code length for symbol i and $p_{i}=$ probability for symbol i
- We say that the code is optimal for distribution p_{i} if
$L_{i} \leq \log _{2} 1 / p_{i}+1$
Then $E L_{X} \leq H(X)+1$ and by Shannon's theorem this is the best we can hope for

For the optimality proof from Exercise 2 from ES4, it suffices that you show $L_{i} \leq \log _{2} 1 / p_{i}+\mathbf{O}(1)$

Entropy 10/12

■ Universal codes

- A prefix-free code is called universal if for every probability distribution over the symbols to be encoded

$$
E L_{X}=O(H(X))
$$

That is, the expected code length is within a constant factor of the optimum for any distribution

- Elias-Gamma, Elias-Delta, Golomb, and Variable-Byte are all universal in this sense

For a finer distinction, the definition of optimality from the previous slide is better
$E L_{X} \leq H(X)+1$ versus $E L_{X}=O(H(X))$

Entropy 11/12

- Entropy-optimality of Elias-Gamma
- Recall: code length for Elias-Gamma is $L_{i}=2\left\lfloor\log _{2} i\right\rfloor+1$
- For which probability distribution is this entropy-optimal?
- We need $L_{i}=2\left\lfloor\log _{2} i\right\rfloor+1 \leq \log _{2} 1 / p_{i}+1$
- This suggests something like $p_{i} \approx 1 / i^{2}$ because:
$p_{i}=1 / i^{2} \rightarrow \log _{2} 1 / p_{i}=\log _{2} i^{2}=2 \cdot \log _{2} i$
- We have to take care that the p_{i} sum to 1 , hence let $p_{i}=1 / i^{2}$ for $i \geq 2$, and p_{1} such that $\Sigma_{i} p_{i}=1$
That is, numbers $i \geq 2$ occur with probability $1 / i^{2}$
Note that $\sum_{i=1 . . \infty} 1 / \mathrm{i}^{2}=\pi^{2} / 6=1.6449 \ldots$

Entropy 12/12

- Optimality of Golomb
- Consider the following random experiment for the generation of an inverted list L of length m :

Include each document in L with probability $p=m / n$, independently of each other, where $\mathrm{n}=$ \#documents

- Let X be a fixed gap in this inverted list, then

$$
\operatorname{Pr}(X=x)=(1-p)^{x-1} \cdot p=: p_{x} \quad \text { for } x=1,2,3, \ldots
$$

Exercise 2 from ES4: Golomb is optimal for this distrib.

- Bottom line: Golomb is optimal for gap-encoded lists But not practical, because of the bit fiddling, see slide 14

References

- Textbook

Section 5: Index compression
Section 5.3: Postings file compression some codes only

- Wikipedia
http://en.wikipedia.org/wiki/Elias gamma coding
http://en.wikipedia.org/wiki/Elias delta coding
http://en.wikipedia.org/wiki/Golomb coding
http://en.wikipedia.org/wiki/Variable-width encoding
http://en.wikipedia.org/wiki/Source coding theorem
http://en.wikipedia.org/wiki/Kraft inequality

