
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 4, Tuesday November 15th, 2016
(Compression, Codes, Entropy)

Overview of this lecture

 Organizational
– Your experiences with ES3 Efficient List Intersection

 Compression
– Motivation saves space and query time

– Codes Elias, Golomb, Variable-Byte

– Entropy Shannon's famous theorem

– Exercise Sheet 4: three nice proofs →	part of Shannon's
theorem + optimality of Golomb + size of inverted index

We take a break from implementation work this week

2

Experiences with ES3 1/2

 Summary / excerpts
– Interesting exercise, many liked performance tweaking

– Less work than ES2 again

– Lack of programming practice in Java or C++

– People who started late took much longer

– Some found it hard to make an improvement

– Given code already used native arrays and "while" trick

– Some of you had large variation between runs

– Coding while watching the US election results is even
worse than lack of sleep, etc.

3

Experiences with ES3 2/2

 Results
– Three inverted lists of different lengths

them 1,717,305 postings
existence 162,511 postings
bielefeld 5,257 postings

– Query them+bielefeld, list length ratio = 327

Any of galloping, skip ptrs, bin. search give large speedup

– Query existence+bielefeld, list length ratio = 31

Skipping helps, but not too much

– Query them+existence, list length ratio = 11

Skipping costs more than it helps, switch to tuned baseline
4

Compression 1/6

 Motivation
– Inverted lists can become very large

Recall: length of an inverted list of a word = total
number of occurrences of that word in the collection

For example, in the English Wikipedia:

them: 1,717,305 occurrences
year: 2,052,964 occurrences
one: 4,022,417 occurrences

– Compression potentially saves space and time

5

Compression 2/6

 Index in memory
– Then compression saves memory (obviously)

– Also: the index might be too large to fit into memory
without compression, and with compression it does

Fitting in memory is good because reading from memory
is much much much faster than reading from disk

Transfer rate from memory ≈ 2 GB / second

Transfer rate from disk ≈ 50 MB / second

6

Compression 3/6

 Index on disk:
– Then compression saves disk space (obviously)

– But it also saves query time, here is a realistic example:

Disk transfer time: 50 MB / second
Compression rate: Factor 5
Decompression time: 30 MB / second
Inverted list of size: 50 MB

Reading uncompressed: 1.0 seconds 50 MB

Reading compressed: 0.2 seconds 10 MB
Decompressing: 0.3 seconds 50 MB

Reading compressed + decompression twice faster
compared to reading uncompressed

7

Compression 4/6

 Gap encoding
– Example inverted list (doc ids only):

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– Numbers small in the beginning, large in the end, using
an int for each id would be 4 bytes per id

– Alternative: store differences from one item to next:

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– This is called gap encoding

– Works as long as we process the lists from left to right

– Now we have a sequence of mostly (but not always)
small numbers … how do we store these in little space?

8

Compression 5/6

 Binary representation
– We can write number x in binary using log2 x + 1 bits

x binary number of bits

1 1 1
2 10 2
3 11 2
4 100 3
5 101 3

– This encoding is optimal in a sense … see later slides

– So why not just (gap-)encode like this and concatenate:

+3, +14, +4, … 11, 1110, 100, … 111110100…

9

Compression 6/6

 Prefix-free codes, definition
– Decode bit sequence from the last slide: 111110100

This could be: +3, +14, +4 11, 1110, 100

Could also be: +7, +6, +4 111, 110, 100

Or: +3, +3, +2, + 4 11, 11, 10, 100

– Problem: we have no way to tell where one code ends
and the next code begins

Equivalently: some codes are prefixes of other codes

– In a prefix-free code, no code is a prefix of another

Then decoding from left to right is unambiguous !

10

Codes 1/4

 Elias-Gamma … from 1975

– Write log2 x zeros, then x in binary like on slide 9

– Prefix-free, because the number of initial zeros tells us
exactly how many bits of the code come afterwards

– Code for x has a length of exactly 2 ∙ log2 x + 1 bits

11

Peter Elias
1923 – 2001

Codes 2/4

 Elias-Delta … also from 1975

– Write log2 x + 1 in Elias-Gamma, followed by x in binary
(like on slide 9) but without the leading 1

– Elias-Delta is also prefix-free and the length of the code
length is log2 x + 2 log2 log2 x + O(1) bits

12

Codes 3/4

 Golomb (not Gollum) … from 1966

– Comes with an integer parameter M, called modulus

– Write x as q ∙ M + r, where q = x div M and r = x mod M

– The code for x is then the concatenation of:

q written in unary with 0s

a single 1 (as a delimiter)

r written in binary

13

Solomon Golomb
1932 – 2016

Codes 4/4

 Variable-Byte (VB)
– Idea: use whole bytes, in order to avoid the (expensive)

bit fiddling needed for the previous schemes

VB often used in practice, for exactly that reason

– Use one bit of each byte to indicate whether this is the last
byte in the current code or not

– VB is also used for UTF-8 encoding … see later lecture

14

Entropy 1/12

 Motivation
– Which code compresses the best ?

It depends !

But on what ?

– Roughly: it depends, on the relative frequency on the
numbers / symbols we want to encode

For example, in natural language, an "e" is much more
frequent than a "z"

So we should encode "e" with less bits than "z"

– The next slides will make this more precise

15

Entropy 2/12

 Entropy
– Intuitively: the information content of a message =

the optimal number of bits to encode that message

– Formally: defined for a discrete random variable X

Without loss of generality range of X = {1, ..., m}

Think of X as generating the symbols of the message

Then the entropy of X is written and defined as

H(X) = - Σi pi log2 pi where pi = Prob(X = i)

– Example 1: one pi = 1 all other 0, then H(X) = 0

– Example 2: all pi = 1/m, then H(X) = log2 m

16

Entropy 3/12

 Shannon's source coding theorem … from 1948

– Let X be a random variable with finite range

– For an arbitrary prefix-free (PF) encoding, let
Lx be the length of the code for x ϵ range(X)

(1) For any PF encoding it holds: E LX ≥ H(X)

(2) There is a PF encoding with: E LX ≤ H(X) + 1

where E denotes the expectation

In words: no code can be better than the
entropy, and there is always a code as good

17

Claude Shannon
1916 – 2001

Entropy 4/12

 Central Lemma … to prove the source coding theorem

– Denote by Li the length of the code for the i-th symbol, then

(1) Given a PF code with lengths Li Σi 2-Li ≤ 1

(2) Given Li with Σi 2-Li ≤ 1 exists PF code with length Li

– Note: Σi 2-Li ≤ 1 is known as "Kraft's inequality"

– Intuitively: not all Li can be small … small Li large 2-Li

For example, the lemma says that a prefix-free code where
three Li = 1 is not possible, because 2-1 + 2-1 + 2-1 > 1

18

Entropy 5/12

 Proof of central lemma, part (1)
– Show: given PF code with lengths Li then Σi 2-Li ≤ 1

– Consider the following random experiment:

Generate a random binary sequence, and pick each bit
independent from all other bits

Stop when you have a valid code, or when no more
code is possible … well-defined for PF codes only !

– Let Ci = the event that code i is generated →		Pr(Ci) = 2-Li

– Then Pr(C1) + … + Pr(Cm) = Pr(C1 ∪ … ∪	Cm) ≤ 1

– And the left-hand side is just Σi 2-Li

19

5

Entropy 6/12

 Proof of central lemma, part (2)
– To show: Li with Σi 2-Li ≤ 1 exists PF code with lengths Li

– Complete binary tree of depth M = max Li … has 2M leaves

– Mark all left edges 0, and all right edges 1

– Consider the code lengths Li in sorted order, smallest first

– Then iterate: pick subtree with 2M - Li leaves that does not
overlap with already picked subtrees … path to that subtree
gives code for symbol i and sum 2M – Li = 2M ∙ Σi 2-Li ≤ 2M

20

Entropy 7/12

 Proof of source coding theorem, part (1)
– To show: for any PF encoding E LX ≥ H(X)

– By definition of expectation: E LX = Σi pi ∙ Li (1)

– By Kraft's inequality: Σi 2-Li ≤ 1 (2)

– Using Lagrange, it can be shown that, under the
constraint (2), (1) is minimized for Li = log2 1/pi

– Then E LX = Σi pi ∙ Li ≥ Σi pi ∙ log2 1/pi = H(X)

This is Exercise 1 from ES4

Perfect exercise to practice Lagrangian optimization and
deepen understanding of the source coding theorem

21

Entropy 8/12

 Proof of source coding theorem, part (2)
– Show: there is a PF encoding with E LX ≤ H(X) + 1

– Let Li = log2 1/pi , then Σi 2-Li ≤ 1

Note that rounding is necessary because the code length
must be an integer, and that we need to round upwards,
so that Kraft's inequality holds

– By the central lemma, part (2), there then exists a PF
code with code lengths Li

– By definition of expectation: E LX = Σi pi ∙ Li

– Hence E LX = Σi pi ∙ log2 1/pi 		≤ Σi pi ∙ log2 1/pi + 1)

= Σi pi ∙ log2 1/pi + Σi pi = H(X) + 1

22

Entropy 9/12

 Entropy-optimal codes
– Consider a PF code with Li = code length for symbol i

and pi = probability for symbol i

– We say that the code is optimal for distribution pi if

Li ≤ log2 1/pi + 1

Then E LX ≤ H(X) + 1 and by Shannon's theorem this
is the best we can hope for

For the optimality proof from Exercise 2 from ES4,
it suffices that you show Li ≤ log2 1/pi + O(1)

23

Entropy 10/12

 Universal codes
– A prefix-free code is called universal if for every

probability distribution over the symbols to be encoded

E LX = O(H(X))

That is, the expected code length is within a constant
factor of the optimum for any distribution

– Elias-Gamma, Elias-Delta, Golomb, and Variable-Byte
are all universal in this sense

For a finer distinction, the definition of optimality from
the previous slide is better

E LX ≤ H(X) + 1 versus E LX = O(H(X))

24

Entropy 11/12

 Entropy-optimality of Elias-Gamma
– Recall: code length for Elias-Gamma is Li = 2 log2 i + 1

– For which probability distribution is this entropy-optimal?

– We need Li = 2 log2 i + 1 ≤ log2 1/pi + 1

– This suggests something like pi ≈ 1 / i2 because:

pi = 1 / i2 →		log2 1/pi = log2 i2 = 2 ∙ log2 i

– We have to take care that the pi sum to 1, hence let
pi = 1 / i2 for i ≥ 2, and p1 such that Σi pi = 1

That is, numbers i ≥ 2 occur with probability 1 / i2

Note that ∑i=1..∞ 1 / i2 = π2 / 6 = 1.6449…

25

Entropy 12/12

 Optimality of Golomb
– Consider the following random experiment for the

generation of an inverted list L of length m :

Include each document in L with probability p = m/n,
independently of each other, where n = #documents

– Let X be a fixed gap in this inverted list, then

Pr(X = x) = (1 – p)x – 1 ∙ p =: px for x = 1, 2, 3, …

Exercise 2 from ES4: Golomb is optimal for this distrib.

– Bottom line: Golomb is optimal for gap-encoded lists

But not practical, because of the bit fiddling, see slide 14

26

References

 Textbook
Section 5: Index compression
Section 5.3: Postings file compression some codes only

 Wikipedia
http://en.wikipedia.org/wiki/Elias_gamma_coding

http://en.wikipedia.org/wiki/Elias_delta_coding

http://en.wikipedia.org/wiki/Golomb_coding

http://en.wikipedia.org/wiki/Variable-width_encoding

http://en.wikipedia.org/wiki/Source_coding_theorem

http://en.wikipedia.org/wiki/Kraft_inequality

27

