
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 3, Tuesday November 8th, 2016
(Efficient List Intersection)

Overview of this lecture

 Organizational
– Your experiences with ES 2 Ranking and Evaluation

– About the tutorials Online vs. Personal

 Contents
– List Intersection Recap, Time Measurement

– Non-algorithmic improvements Arrays, Branching, Sentinels

– Algorithmic improvements Galloping Search, Skip Pointers

Exercise Sheet 3: implement list intersection and make it
as fast as possible on a small benchmark we have prepared

2

Experiences with ES2 1/3

 Summary / excerpts
– Time-extensive exercise sheet, but again mostly due to

lack of programming experience or practice
– Some mistakes in the TIP file, but quickly fixed when

pointed out on the forum
Please always watch the forum for updates !

– Some problems with the floats (1.885) in the test cases
– Some bugs not found by test cases
– Lecture recording helped a lot
– One does not program well with: a cold, lack of sleep,

lack of concentration, starting late, …

3

Experiences with ES2 2/3

 Results
– Small differences in the implementation can make a

significant difference in the results
– Variation of the BM25 parameters make some queries

better, but don't affect others or make them worse
– Boosting (popular documents, full match) helped a bit
– Removing frequent words ("stop words") helped a bit
– Best results: P@3 ≈ 60%, P@R ≈ 40%, MAP ≈ 40%
– Bottom line: tuning a ranking algorithm is super

important (for result quality) but also super hard
In particular, it is very hard to understand / predict the
effect of changes in the parameters / implementation

4

Experiences with ES2 3/3

 Test Cases
– A working program written by yourself is a confirmation

that you have really understood the stuff from the lecture
– However: this only holds true if the program does what it

should do and not just "something"
Experience from (many) previous courses: a significant
fraction of students submit code that technically "works"
but is otherwise wrong or even completely wrong
E.g. for ES2, a completely wrong ranking

– This is why we make the effort to provide test cases for
you and require from you that you implement them
This has actually been a frequent request in previous years

5

Tutorials

 Online vs. personal
– So far, the tutorials are completely online:

You submit online, you get feedback online, and questions
and answers are online

– This is great because it gives you a lot of flexibility (you
can work and ask any time you prefer)

– However, some people prefer a personal meeting, at least
from time to time … hence we offer:
You can meet with your tutor anytime, just ask him/her
There will be a personal tutorial every four weeks or so
QUESTION: when would be a good time for you?

6

List Intersection 1/4

 Recap and motivation for today
– In Lecture 1, we have intersected the inverted lists
– In Lecture 2, we have merged the inverted lists
– For efficiency reasons, many search engines only return

results which contain all the query words
Apache's Lucene, the most widely used open-source
search engine, supports intersect (AND) and merge (OR)
In most applications, intersect is used by default

– Today we will focus on efficiency and therefore on list
intersection

7

List Intersection 2/4

 Time measurement
– Trickier than it may seem at first, because there can be

significant variation between runs, for example due to:
Other jobs running on your machine
The Java garbage collector running unpredictably
Data is partly in disk cache / L1-cache / TLB cache

– Therefore, always repeat your time measurements, and
take the average over all these
For ES3, repeat 5 times for each measurement
Note: repetition itself can also distort the truth because
of caching effects ... but not an issue for us today

8

List Intersection 3/4

 Time measurement in Java
– For millisecond resolution

long time1 = System.currentTimeMillis();
// whatever code you want to time
long time2 = System.currentTimeMillis();
long millis = time2 – time1;

– For microsecond resolution

long time1 = System.nanoTime();
// whatever code you want to time
long time2 = System.nanoTime();
long micros = (time2 – time1) / 1000;

9

List Intersection 4/4

 Time measurement in C++
– For millisecond resolution (C-Style) #include <time.h>

clock_t time1 = clock();
// whatever code you want to time
clock_t time2 = clock();
size_t millis = 1000 * (time2 – time1) / CLOCKS_PER_SEC;

– For microsecond resolution (C++11) #include <chrono>

auto time1 = std::chrono::high_resolution_clock::now();
// whatever code you want to time
auto time2 = std::chrono::high_resolution_clock::now();
size_t micros = std::chrono::duration_cast

<microseconds>(…).count();

10

Non-algorithmic improvements 1/4

 Motivation
– Implementation details can have a great impact on

performance (even with the same underlying algorithm)

– Let us implement the basic "zipper" algorithm for list
intersection from Lecture 1 and look at a few variations

– We make a part of the code (reading from file and the
basic algorithm) available to you in both Java and C++

This should make ES3 easier / less work for you

– During the lecture, I will implement in Java today

Note that using Python makes little sense when
studying efficiency issues: the overhead of its internal
data types (i.p. Python's lists/arrays) weighs too heavy

11

Non-algorithmic improvements 2/4

 Native arrays
– Java: ArrayList much worse than native [] array

Elements of an ArrayList cannot be basic data types
(e.g. int), but have to be objects (e.g. Integer)

This causes inefficient byte code / machine code

– C++: std::vector is as good as [] with option –O3

Elements of an std::vector can be basic data types
as well as objects

Due to C++'s templating mechanism, machine code
for std::vector<int> is almost the same as for int[]

12

Non-algorithmic improvements 3/4

 Predictable branches
– Branches = all conditional parts in your code

In particular, if … then … else parts

– Modern processors do pipelining = speculative execution
of future instructions before the current ones are done

– For conditional parts they have to guess the outcome

– So good to minimize amount of conditional parts
and/or improve the predictability of conditionals

A conditional has good predictability if it evaluates to
the same Boolean value most of the time

13

Non-algorithmic improvements 4/4

 Sentinels
– Special elements to avoid testing for index out of bound

Less code + further reduction in number of branches

– For list intersection: id ∞ at the end of both lists

For Java, take: Integer.MAX_VALUE

For C++, take: std::numeric_limits<int>::max()

14

Algorithmic improvements 1/8

 Preliminaries
– We have two lists, which we want to intersect

– Let A be the smaller list, with k elements

– Let B be the longer list, with n elements

List intersection is commutative, so we can always
assume that the first list is A, and the second is B

– Recall that both lists are sorted … this is crucial for the
basic algorithm and all the algorithms in the following

15

Algorithmic improvements 2/8

 Binary search in the longer list
– Search each element from A in B, using binary search

– This has time complexity Θ(k ∙ log n)

Good for small k … but for k = Θ(n) this is Θ(n ∙ log n),
and hence slower than the "zipper"-style linear intersect

16

Algorithmic improvements 3/8

 Binary search in remainder of longer list
– Time complexity in the best case Θ(k + log n)

First element from A towards the end of list B

– Time complexity in the worst case Θ(k ∙ log n)

All elements of A at the beginning of list B

– Time complexity in the "typical" case Θ(k ∙ log n)

Elements of A "evenly distributed" over list B

17

Algorithmic improvements 4/8

 Galloping search
– Goal: when elements A[i] and A[i+1] are located at

positions j1 and j2 in B, then, with d:= j2 – j1 ("gap"):

spend only time Θ(log d) to locate element A[i+1]

– Idea: first do an exponential search, to get an upper
bound on the range, then a binary search as before

18

Algorithmic improvements 5/8

 Galloping search, time complexity
– Let j1, ..., jk the positions of the elements of A in B

– Let di = ji – ji-1 for i > 1 and d1 = 1 (the "gaps")

Note that Σi di ≤ n = the number of elements in B

– Then the time complexity is O(Σi log di)

Not a nice formula, so let's find the maximum value,
independent of the particular d1, …, dk

– Lemma: Σi log di is maximized when all di = n / k

– Galloping search therefore takes time O(k ∙ log (1 + n/k))

This is always O(n) and hence never worse than "Zipper"

19

Algorithmic improvements 6/8

 Proof of Lemma … max Σi ln di under constraint Σi di ≤ n

– This is an instance of Lagrangian optimization:

1. Write constraint as equation: Σi di – n' = 0 … n' < n

2. Define L(d1, …, dk, λ) = Σi ln di + λ ∙ (Σi di – n')

3. Set partial derivatives = 0 to find all local optima
and check the objective function at the borders

20

Algorithmic improvements 7/8

 Comparison-based lower bound
– Recall the lower-bound for comparison-based sorting

There are n! possible outputs, we have to differentiate
between all of them, and only two choices per step

Hence #steps required ≥ log2 (n!) = Ω(n ∙ log n)

– We can use a similar argument for intersection / union:

There are n+k over k ways how the k elements from
A can be placed within the n elements from B, …

Hence #steps required ≥ log2 (n/k)k = k ∙ log2 (n/k)

Galloping search is hence asymptotically optimal

21

Algorithmic improvements 8/8

 Skip Pointers
– Idea: potentially skip large parts of longer list B

– Skip pointer = special element in list B with a value x
and the index j of the first element in B with B[j] ≥ x

When intersecting, follow pointer if current A[i] ≥ x

Placement of skip pointers is heuristic … for ES3 you
can investigate good placements experimentally

– Advantage: very simple to implement

In particular, simpler than galloping search and thus
often more effective in practice, even if not "optimal"

22

References

 Textbook
Section 2.3: Faster intersection with skip pointers

 Literature
A simple algorithm for merging two linearly ordered sets

F.K. Hwang and S. Lin SICOMP 1(1):31–39, 1980

A fast set intersection algorithm for sorted sequences

R. Baeza-Yates CPM, LNCS 3109, 31–39, 2004

 Wikipedia
http://en.wikipedia.org/wiki/Lagrange_multiplier

23

