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Overview of this lecture

 Organizational
– Your experiences with ES 2 Ranking and Evaluation

– About the tutorials Online vs. Personal

 Contents
– List Intersection Recap, Time Measurement

– Non-algorithmic improvements Arrays, Branching, Sentinels

– Algorithmic improvements Galloping Search, Skip Pointers

Exercise Sheet 3: implement list intersection and make it
as fast as possible on a small benchmark we have prepared
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Experiences with ES2   1/3

 Summary / excerpts
– Time-extensive exercise sheet, but again mostly due to 

lack of programming experience or practice
– Some mistakes in the TIP file, but quickly fixed when 

pointed out on the forum
Please always watch the forum for updates !

– Some problems with the floats (1.885) in the test cases
– Some bugs not found by test cases
– Lecture recording helped a lot
– One does not program well with: a cold, lack of sleep, 

lack of concentration, starting late, …
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Experiences with ES2   2/3

 Results
– Small differences in the implementation can make a 

significant difference in the results
– Variation of the BM25 parameters make some queries 

better, but don't affect others or make them worse
– Boosting (popular documents, full match) helped a bit
– Removing frequent words ("stop words") helped a bit
– Best results: P@3 ≈ 60%, P@R ≈ 40%, MAP ≈ 40%
– Bottom line: tuning a ranking algorithm is super 

important (for result quality) but also super hard
In particular, it is very hard to understand / predict the 
effect of changes in the parameters / implementation
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Experiences with ES2   3/3

 Test Cases
– A working program written by yourself is a confirmation 

that you have really understood the stuff from the lecture
– However: this only holds true if the program does what it 

should do and not just "something"
Experience from (many) previous courses: a significant 
fraction of students submit code that technically "works" 
but is otherwise wrong or even completely wrong
E.g. for ES2, a completely wrong ranking

– This is why we make the effort to provide test cases for 
you and require from you that you implement them
This has actually been a frequent request in previous years

5



Tutorials

 Online vs. personal
– So far, the tutorials are completely online:

You submit online, you get feedback online, and questions 
and answers are online

– This is great because it gives you a lot of flexibility (you 
can work and ask any time you prefer)

– However, some people prefer a personal meeting, at least 
from time to time … hence we offer:
You can meet with your tutor anytime, just ask him/her
There will be a personal tutorial every four weeks or so
QUESTION: when would be a good time for you?
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List Intersection   1/4

 Recap and motivation for today
– In Lecture 1, we have intersected the inverted lists
– In Lecture 2, we have merged the inverted lists
– For efficiency reasons, many search engines only return 

results which contain all the query words
Apache's Lucene, the most widely used open-source 
search engine, supports intersect (AND) and merge (OR)
In most applications, intersect is used by default

– Today we will focus on efficiency and therefore on list 
intersection
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List Intersection   2/4

 Time measurement
– Trickier than it may seem at first, because there can be 

significant variation between runs, for example due to:
Other jobs running on your machine
The Java garbage collector running unpredictably
Data is partly in disk cache / L1-cache / TLB cache

– Therefore, always repeat your time measurements, and 
take the average over all these
For ES3, repeat 5 times for each measurement
Note: repetition itself can also distort the truth because 
of caching effects ... but not an issue for us today
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List Intersection   3/4

 Time measurement in Java
– For millisecond resolution

long time1 = System.currentTimeMillis();
// whatever code you want to time
long time2 = System.currentTimeMillis();
long millis = time2 – time1;

– For microsecond resolution

long time1 = System.nanoTime();
// whatever code you want to time
long time2 = System.nanoTime();
long micros = (time2 – time1) / 1000;
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List Intersection   4/4

 Time measurement in C++ 
– For millisecond resolution (C-Style) #include <time.h>

clock_t time1 = clock();
// whatever code you want to time
clock_t time2 = clock();
size_t millis = 1000 * (time2 – time1) / CLOCKS_PER_SEC;

– For microsecond resolution (C++11)     #include <chrono>

auto time1 = std::chrono::high_resolution_clock::now();
// whatever code you want to time
auto time2 = std::chrono::high_resolution_clock::now();
size_t micros = std::chrono::duration_cast

<microseconds>(…).count();
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Non-algorithmic improvements   1/4

 Motivation
– Implementation details can have a great impact on 

performance (even with the same underlying algorithm)

– Let us implement the basic "zipper" algorithm for list 
intersection from Lecture 1 and look at a few variations 

– We make a part of the code (reading from file and the 
basic algorithm) available to you in both Java and C++

This should make ES3 easier / less work for you

– During the lecture, I will implement in Java today

Note that using Python makes little sense when 
studying efficiency issues: the overhead of its internal 
data types (i.p. Python's lists/arrays) weighs too heavy 
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Non-algorithmic improvements   2/4

 Native arrays
– Java: ArrayList much worse than native [] array

Elements of an ArrayList cannot be basic data types 
(e.g. int), but have to be objects (e.g. Integer)

This causes inefficient byte code / machine code

– C++: std::vector is as good as [] with option –O3

Elements of an std::vector can be basic data types
as well as objects

Due to C++'s templating mechanism, machine code 
for std::vector<int> is almost the same as for int[]
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Non-algorithmic improvements   3/4

 Predictable branches
– Branches = all conditional parts in your code

In particular, if … then … else parts 

– Modern processors do pipelining = speculative execution 
of future instructions before the current ones are done

– For conditional parts they have to guess the outcome

– So good to minimize amount of conditional parts 
and/or improve the predictability of conditionals

A conditional has good predictability if it evaluates to 
the same Boolean value most of the time
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Non-algorithmic improvements   4/4

 Sentinels
– Special elements to avoid testing for index out of bound

Less code + further reduction in number of branches

– For list intersection: id ∞ at the end of both lists

For Java, take: Integer.MAX_VALUE

For C++, take: std::numeric_limits<int>::max()
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Algorithmic improvements   1/8

 Preliminaries
– We have two lists, which we want to intersect

– Let A be the smaller list, with k elements

– Let B be the longer list, with n elements

List intersection is commutative, so we can always
assume that the first list is A, and the second is B

– Recall that both lists are sorted … this is crucial for the 
basic algorithm and all the algorithms in the following

15



Algorithmic improvements   2/8

 Binary search in the longer list
– Search each element from A in B, using binary search

– This has time complexity Θ(k ∙ log n)

Good for small k … but for k = Θ(n) this is Θ(n ∙ log n), 
and hence slower than the "zipper"-style linear intersect 
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Algorithmic improvements   3/8

 Binary search in remainder of longer list
– Time complexity in the best case Θ(k + log n)

First element from A towards the end of list B

– Time complexity in the worst case Θ(k ∙ log n)

All elements of A at the beginning of list B

– Time complexity in the "typical" case Θ(k ∙ log n)

Elements of A "evenly distributed" over list B
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Algorithmic improvements   4/8

 Galloping search
– Goal: when elements A[i] and A[i+1] are located at 

positions j1 and j2 in B, then, with d:= j2 – j1 ("gap"):

spend only time Θ(log d) to locate element A[i+1]

– Idea: first do an exponential search, to get an upper 
bound on the range, then a binary search as before
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Algorithmic improvements   5/8

 Galloping search, time complexity
– Let j1, ..., jk the positions of the elements of A in B

– Let di = ji – ji-1 for i > 1 and d1 = 1   (the "gaps")

Note that Σi di ≤ n = the number of elements in B

– Then the time complexity is O(Σi log di)

Not a nice formula, so let's find the maximum value, 
independent of the particular d1, …, dk

– Lemma: Σi log di is maximized when all di = n / k

– Galloping search therefore takes time O(k ∙ log (1 + n/k))

This is always O(n) and hence never worse than "Zipper"
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Algorithmic improvements   6/8

 Proof of Lemma … max Σi ln di under constraint Σi di ≤ n

– This is an instance of Lagrangian optimization:

1. Write constraint as equation:  Σi di – n' = 0 … n' < n 

2. Define L(d1, …, dk, λ) = Σi ln di + λ ∙ (Σi di – n')

3. Set partial derivatives = 0 to find all local optima
and check the objective function at the borders
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Algorithmic improvements   7/8

 Comparison-based lower bound
– Recall the lower-bound for comparison-based sorting   

There are n! possible outputs, we have to differentiate 
between all of them, and only two choices per step

Hence #steps required  ≥ log2 (n!) = Ω(n ∙ log n)

– We can use a similar argument for intersection / union:

There are  n+k over k  ways how the k elements from 
A can be placed within the n elements from B, …

Hence #steps required  ≥ log2 (n/k)k = k ∙ log2 (n/k)

Galloping search is hence asymptotically optimal
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Algorithmic improvements   8/8

 Skip Pointers
– Idea: potentially skip large parts of longer list B

– Skip pointer = special element in list B with a value x 
and the index j of the first element in B with B[j] ≥ x

When intersecting, follow pointer if current A[i] ≥ x

Placement of skip pointers is heuristic … for ES3 you
can investigate good placements experimentally

– Advantage: very simple to implement

In particular, simpler than galloping search and thus 
often more effective in practice, even if not "optimal"
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