
Information Retrieval
WS 2016 / 2017

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 2, Tuesday October 25th, 2016
(Ranking, Evaluation)

Overview of this lecture

 Organizational
– Your experiences with ES1 Inverted index

– Requirements for ES2 Test Cases

 Contents
– Ranking tf.idf and BM25

– Evaluation Ground truth, Precision, …

– Exercise Sheet #2: implement BM25, tune your
ranking, and then evaluate on a small benchmark

There will be a small competition (table on the Wiki)

2

Experiences with ES1 1/3

 Summary / excerpts

– Nice and interesting exercise … most time spent on SVN,
Checkstyle, etc. or due to lack of programming practice

Don't worry, this will get much better soon

– Some problems understanding Exercise 2

In case of doubts, always ask on the Forum!

– Some battles fought with Jenkins / Checkstyle

Don't worry, you will get used to it quickly

– Problems with the encoding on some platforms

One solution: open(file, encoding=utf8)

3

Experiences with ES1 2/3

 Results

– Queries that work well:

harry potter sufficiently specific keywords

columbia pictures 2011 sufficiently specific keywords

– Queries that don't work well

men in black words frequent in other docs

the kings speech apostrophe in doc (king's)

spiderman two words in doc (spider man)

4

Experiences with ES1 3/3

 Linear construction time?

– Quite a few of you implemented something like this:

for line in file:
…
if record_id not in self.inverted_lists[word]:

self.inverted_lists[word].append(record_id)

– Then index construction on movies.txt takes very long:

the "not in" takes linear time, not constant time

which means the whole loop take quadratic time

Super-important piece of advice: never use built-in
functions without understanding their time-complexity

5

Requirements for ES2

 Test Cases

– For ES1 you had to write the test cases yourself

– From now on, we will provide test cases, at least
for the central functions of each exercise sheet

– This should save you some work, but also our tutors

Code that does not pass a basic unit test can be very
hard and cumbersome to correct (similar to code that
doesn't compile or has checkstyle errors)

– In return, you have to implement these unit tests

You can also extend them, but not restrict them

– As before, everything must run through on Jenkins
without errors, otherwise no correction and no points

6

Ranking 1/14

 Motivation

– Queries often return many hits

– Typically more than one wants to (or even can) look at

For web search: often millions of documents

But even for less hits a proper ranking is key to usability

– So we want to have the most "relevant" hits first

– Problem: how to measure what is how "relevant"

7

Ranking 2/14

 Basic Idea

– In the inverted lists, for each doc id also have a score

university 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– While merging, aggregate the scores, then sort by score

MERGED 17 0.5 , 23 0.1 , 34 0.8 , 53 0.3 , 97 0.3 , 127 1.5

SORTED 127 1.5 , 34 0.8 , 17 0.5 , 53 0.3 , 97 0.3 , 23 0.1

– The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also
contain more information, e.g. the position of a word

8

Ranking 3/14

 Getting the top-k results

– A full sort of the result list takes time Θ(n · log n),
where n is the number of postings in the list

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest
elements, for a given k

Can be computed in time Θ(n + k · log k)

k rounds of HeapSort yield time Θ(n + k · log n)

For constant k these are both Θ(n)

For ES2, you can ignore this issue

9

Ranking 4/14

 Meaningful scores

– How do we precompute good scores

university 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– Goal: the score for the posting for doc Di in the inverted
list for word w should reflect the relevance of w in Di

In particular, the larger the score, the more relevant

– Problem: relevance is somewhat subjective

But it has to be done somehow anyway !

10

Ranking 5/14

 Term frequency (tf)

– The number of times a word occurs in a document

– Problem: some words are frequent in many documents,
regardless of the content

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

A word like "of" should not count much for relevance

Some of you observed that already while trying out
queries for ES1

11

Ranking 6/14

 Document frequency (df)

– The number of documents containing a particular word

dfuniversity = 16.384 , dfof = 524.288 , dffreiburg = 1.024

For simplicity, number are powers of 2, see below why

– Inverse document frequency (idf)

idf = log2 (N / df) N = total number of documents

For the example df scores above and N = 1.048.576 = 220

idfuniversity = 6 , idfof = 1, idffreiburg = 10

Understand: without the log2 , small differences in df would
have too much of an effect ; why exactly log2 later slide

12

Ranking 7/14

 Combining the two (tf.idf)

– Reconsider our earlier tf only example

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

– Now combined with idf scores from previous slide

university … , 57 30 , … … … , 123 12 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 30 , … … … , 123 10 , …

SCORE SUM … , 57 74 , … … … , 123 45 , …

13

Ranking 8/14

 Problems with tf.idf in practice

– The idf part is fine, but the tf part has several problems

– Let w be a word, and D1 and D2 be two documents

– Problem 1: assume that D1 is longer than D2

Then tf for w in D1 tends to be larger then tf for w in D2,
because D1 is longer, not because it's more "about" w

– Problem 2: assume that D1 and D2 have the same length,
and that the tf of w in D1 is twice the tf of w in D2

Then it is reasonable to assume that D1 is more "about" w
than D2, but just a little more, and not twice more

14

Ranking 9/14

 The BM25 (best match) formula

– This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf)

tf = term frequency, DL = document length, AVDL =
average document length

– Standard setting for BM25: k = 1.75 and b = 0.75

Binary: k = 0, b = 0; Normal tf.idf: k = ∞, b = 0

15

Ranking 10/14

16

 Plausibility argument for BM25, part 1

– Start with the simple formula tf · idf

– Replace tf by tf* such that the following properties hold:

tf* = 0 if and only if tf = 0

tf* increases as tf increases

tf* fixed limit as tf ∞

– The "simplest" formula with these properties is

tf* = tf · (k + 1) / (k + tf)

Ranking 11/14

17

 Plausibility argument for BM25, part 2

– So far, we have tf* = tf · (k + 1) / (k + tf)

– Normalize by the length of the document

Replace tf by tf / α

Full normalization: α = DL / AVDL … too extreme

Some normalization: α = (1 – b) + b · DL / AVDL

– This gives us tf* = tf / α	· (k + 1) / (k + tf / α)

– And hence tf* = tf · (k + 1) / (k · α	+ tf)

Lots of "theory" behind this formula, but to me not really
more convincing than these simple plausibility arguments

Ranking 12/14

 Implementation advice

– First compute the inverted lists with tf scores

You already did that (implicitly or explicitly) for ES1

– Along with that compute the document length (DL) for each
document, and the average document length (AVDL)

You can measure DL (and AVDL) via the number of words

– Make a second pass over the inverted lists and replace the
tf scores by tf* · idf scores

tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf) · log2 (N / df)

Note that the df of a word is just the length (number of
postings) in its inverted list

18

Ranking 13/14

 Further refinements

– For ES2, play around with the BM25 parameters k and b

– Boost results that match each query word at least once

Warning: when you restrict your results to such matches,
you might miss some relevant results

For example: steven spielberg movies

– Somehow take the popularity of a movie into account

In the file on the Wiki, movies are sorted by popularity

Popularity scores also have a Zipf distribution, so you might
take ~ N-α as popularity score for the N-th movie in the list

– Anything else that comes to your mind and might help …

19

Ranking 14/14

 Advanced methods

– There is a multitude of other sources / approaches for
improving the quality of the ranking, for example:

Using query logs and click-through data

Who searches what and clicked on what … main pillar
for the result quality of big search engines like Google

Learning to rank

Using machine learning (more about that in a later
lecture) to find the best parameter setting

20

Evaluation 1/6

 Ground truth

– For a given query, the ids of all documents relevant for
that query

Query: matrix movies

Relevant: 10, 582, 877, 10003

– For ES2, we have built a ground truth for 10 queries

Building a good and large enough ground truth is a
common (and time-consuming) part in research in IR

21

Evaluation 2/6

 Precision (P@k)

– The P@k for a given result list for a given query is the
percentage of relevant documents among the top-k

Query: matrix movies

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, 37, …

P@1: 1/1 = 100%

P@2: 1/2 = 50%

P@3: 1/3 = 33%

P@4: 2/4 = 50%

P@5: 3/5 = 60%
22

Evaluation 3/6

 Average Precision (AP)

– Let R1, …, Rk be the sorted list of positions of the
relevant document in the result list of a given query

– Then AP is the average of the k P@Ri values

Query: matrix movies

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, …, 877

R1, …, R4: 1, 4, 5, 40

P@R1, …, P@R4: 100%, 50%, 60%, 10%

AP: 55%

Note: for docs not in result list, just take P@Ri = 0
23

Evaluation 4/6

 Mean Precisions (MP@k, MP@R, MAP)

– Given a benchmark with several queries + ground truth

– Then one can capture the quality of a system by taking
the mean (average) of a given measure over all queries

MP@k = mean of the P@k values over all queries

MP@R = mean of the P@R values over all queries

MAP = mean of the AP values over all queries

These are very common measures, which you will
find in a lot of research papers on information retrieval

24

Evaluation 5/6

 Other measures

– There is a BIG variety of other evaluation measures, e.g.

– nDCG = normalized discounted cumulative growth

Takes into account that documents can have varying
degrees of relevance, e.g. "primary" and "secondary"

Gives credit if "primary" is ranked before "secondary"

– BPref = binary relevance … preference relation

Takes into accounts that some documents are unjudged

This is a frequent problem in benchmarks for huge text
corpora, where complete judgment is impossible

E.g. all relevant documents for "tom hanks" on the web

25

Evaluation 6/6

 Overfitting

– Tuning parameters / methods to achieve good results on
a given benchmark is called overfitting

In an extreme case: for each query from the benchmark,
output the list of relevant docs from the ground truth

– In a realistic environment (real search engine or com-
petition), one is given a training set for development

The actual evaluation is on a test set, which must not
be used / was not available during development

For ES2, do the development / tuning on some queries
of your choice, then evaluate without further changes

26

References

 In the Manning/Raghavan/Schütze textbook
Section 6: Scoring and Term Weighting

Section 8: Evaluation in Information Retrieval

 Relevant Papers
Probabilistic Relevance: BM25 and Beyond FnTIR 2009

Test Collection Based Evaluation of IR Systems FnTIR 2010

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Okapi_BM25

https://en.wikipedia.org/wiki/Information_retrieval
#Performance_and_correctness_measures

27

