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Overview of this lecture

 Organizational
– Your experiences with ES1 Inverted index

– Requirements for ES2 Test Cases

 Contents
– Ranking tf.idf and BM25

– Evaluation Ground truth, Precision, …

– Exercise Sheet #2:  implement BM25, tune your 
ranking, and then evaluate on a small benchmark

There will be a small competition (table on the Wiki)
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Experiences with ES1   1/3

 Summary / excerpts

– Nice and interesting exercise … most time spent on SVN, 
Checkstyle, etc. or due to lack of programming practice

Don't worry, this will get much better soon

– Some problems understanding Exercise 2

In case of doubts, always ask on the Forum!

– Some battles fought with Jenkins / Checkstyle

Don't worry, you will get used to it quickly

– Problems with the encoding on some platforms

One solution:  open(file, encoding=utf8)
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Experiences with ES1   2/3

 Results

– Queries that work well:

harry potter sufficiently specific keywords

columbia pictures 2011 sufficiently specific keywords

– Queries that don't work well

men in black words frequent in other docs

the kings speech apostrophe in doc (king's)

spiderman two words in doc (spider man)
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Experiences with ES1   3/3

 Linear construction time?

– Quite a few of you implemented something like this:

for line in file:
…    
if record_id not in self.inverted_lists[word]:

self.inverted_lists[word].append(record_id)

– Then index construction on movies.txt takes very long:

the "not in" takes linear time, not constant time

which means the whole loop take quadratic time

Super-important piece of advice: never use built-in 
functions without understanding their time-complexity
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Requirements for ES2

 Test Cases

– For ES1 you had to write the test cases yourself

– From now on, we will provide test cases, at least
for the central functions of each exercise sheet

– This should save you some work, but also our tutors

Code that does not pass a basic unit test can be very 
hard and cumbersome to correct (similar to code that 
doesn't compile or has checkstyle errors)

– In return, you have to implement these unit tests

You can also extend them, but not restrict them

– As before, everything must run through on Jenkins 
without errors, otherwise no correction and no points
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Ranking   1/14

 Motivation

– Queries often return many hits

– Typically more than one wants to (or even can) look at

For web search: often millions of documents

But even for less hits a proper ranking is key to usability

– So we want to have the most "relevant" hits first

– Problem: how to measure what is how "relevant"
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Ranking   2/14

 Basic Idea

– In the inverted lists, for each doc id also have a score

university  17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– While merging, aggregate the scores, then sort by score

MERGED 17 0.5 , 23 0.1 , 34 0.8 , 53 0.3 , 97 0.3 , 127 1.5

SORTED 127 1.5 , 34 0.8 , 17 0.5 , 53 0.3 , 97 0.3 , 23 0.1

– The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also 
contain more information, e.g. the position of a word
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Ranking   3/14

 Getting the top-k results

– A full sort of the result list takes time Θ(n · log n),
where n is the number of postings in the list

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest 
elements, for a given k

Can be computed in time Θ(n + k · log k)

k rounds of HeapSort yield time Θ(n + k · log n)

For constant k these are both Θ(n)

For ES2, you can ignore this issue 
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Ranking   4/14

 Meaningful scores

– How do we precompute good scores

university 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– Goal: the score for the posting for doc Di in the inverted 
list for word w should reflect the relevance of w in Di

In particular, the larger the score, the more relevant

– Problem: relevance is somewhat subjective

But it has to be done somehow anyway !
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Ranking   5/14

 Term frequency (tf)

– The number of times a word occurs in a document

– Problem: some words are frequent in many documents, 
regardless of the content

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123  26 , …

A word like "of" should not count much for relevance

Some of you observed that already while trying out 
queries for ES1 
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Ranking   6/14

 Document frequency (df)

– The number of documents containing a particular word   

dfuniversity = 16.384 , dfof = 524.288 , dffreiburg = 1.024

For simplicity, number are powers of 2, see below why

– Inverse document frequency (idf)

idf = log2 (N / df)   N = total number of documents

For the example df scores above and N = 1.048.576 = 220

idfuniversity = 6 , idfof = 1, idffreiburg = 10  

Understand: without the log2 , small differences in df would 
have too much of an effect ; why exactly log2  later slide
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Ranking   7/14

 Combining the two (tf.idf)

– Reconsider our earlier tf only example

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123  26 , …

– Now combined with idf scores from previous slide

university … , 57 30 , … … … , 123 12 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 30 , … … … , 123 10 , …

SCORE SUM … , 57 74 , … … … , 123  45 , …
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Ranking   8/14

 Problems with tf.idf in practice

– The idf part is fine, but the tf part has several problems

– Let w be a word, and D1 and D2 be two documents

– Problem 1: assume that D1 is longer than D2

Then tf for w in D1 tends to be larger then tf for w in D2, 
because D1 is longer, not because it's more "about" w

– Problem 2: assume that D1 and D2 have the same length, 
and that the tf of w in D1 is twice the tf of w in D2

Then it is reasonable to assume that D1 is more "about" w
than D2, but just a little more, and not twice more
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Ranking   9/14

 The BM25 (best match) formula

– This tf.idf style formula has consistently outperformed 
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k  · (1 – b + b · DL / AVDL) + tf)

tf = term frequency, DL = document length, AVDL = 
average document length

– Standard setting for BM25:  k = 1.75 and b = 0.75

Binary: k = 0, b = 0;  Normal tf.idf: k = ∞, b = 0 
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Ranking   10/14
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 Plausibility argument for BM25, part 1

– Start with the simple formula tf · idf

– Replace tf by tf* such that the following properties hold:

tf* = 0 if and only if tf = 0

tf* increases as tf increases

tf*  fixed limit as tf  ∞

– The "simplest" formula with these properties is

tf* = tf · (k + 1) / (k + tf)



Ranking   11/14
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 Plausibility argument for BM25, part 2

– So far, we have tf* = tf · (k + 1) / (k + tf)

– Normalize by the length of the document

Replace tf by tf / α

Full normalization: α = DL / AVDL … too extreme

Some normalization: α = (1 – b) + b · DL / AVDL

– This gives us tf* = tf / α	· (k + 1) / (k + tf / α)

– And hence tf* = tf · (k + 1) / (k · α	+ tf)

Lots of "theory" behind this formula, but to me not really 
more convincing than these simple plausibility arguments



Ranking   12/14

 Implementation advice

– First compute the inverted lists with tf scores

You already did that (implicitly or explicitly) for ES1

– Along with that compute the document length (DL) for each 
document, and the average document length (AVDL)

You can measure DL (and AVDL) via the number of words

– Make a second pass over the inverted lists and replace the
tf scores by tf* · idf scores

tf · (k + 1) / (k  · (1 – b + b · DL / AVDL) + tf) · log2 (N / df)

Note that the df of a word is just the length (number of 
postings) in its inverted list    
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Ranking   13/14

 Further refinements

– For ES2, play around with the BM25 parameters k and b

– Boost results that match each query word at least once

Warning: when you restrict your results to such matches,
you might miss some relevant results

For example: steven spielberg movies

– Somehow take the popularity of a movie into account

In the file on the Wiki, movies are sorted by popularity

Popularity scores also have a Zipf distribution, so you might 
take ~ N-α as popularity score for the N-th movie in the list

– Anything else that comes to your mind and might help …
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Ranking   14/14

 Advanced methods

– There is a multitude of other sources / approaches for 
improving the quality of the ranking, for example:

Using query logs and click-through data

Who searches what and clicked on what … main pillar
for the result quality of big search engines like Google

Learning to rank

Using machine learning (more about that in a later 
lecture) to find the best parameter setting  
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Evaluation   1/6

 Ground truth

– For a given query, the ids of all documents relevant for 
that query

Query: matrix movies 

Relevant: 10, 582, 877, 10003

– For ES2, we have built a ground truth for 10 queries

Building a good and large enough ground truth is a 
common (and time-consuming) part in research in IR
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Evaluation   2/6

 Precision (P@k)

– The P@k for a given result list for a given query is the 
percentage of relevant documents among the top-k

Query: matrix movies 

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, 37, …

P@1: 1/1 = 100%

P@2: 1/2 = 50%

P@3: 1/3 = 33%

P@4: 2/4 = 50%

P@5: 3/5 = 60%
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Evaluation   3/6

 Average Precision (AP)

– Let R1, …, Rk be the sorted list of positions of the 
relevant document in the result list of a given query

– Then AP is the average of the k P@Ri values

Query: matrix movies 

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, …, 877

R1, …, R4: 1, 4, 5, 40

P@R1, …, P@R4: 100%, 50%, 60%, 10%

AP: 55%

Note: for docs not in result list, just take P@Ri = 0
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Evaluation   4/6

 Mean Precisions (MP@k, MP@R, MAP)

– Given a benchmark with several queries + ground truth

– Then one can capture the quality of a system by taking 
the mean (average) of a given measure over all queries

MP@k = mean of the P@k values over all queries

MP@R = mean of the P@R values over all queries

MAP = mean of the AP values over all queries

These are very common measures, which you will 
find in a lot of research papers on information retrieval
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Evaluation   5/6

 Other measures

– There is a BIG variety of other evaluation measures, e.g.

– nDCG = normalized discounted cumulative growth

Takes into account that documents can have varying 
degrees of relevance, e.g. "primary" and "secondary"

Gives credit if "primary" is ranked before "secondary"

– BPref = binary relevance … preference relation

Takes into accounts that some documents are unjudged

This is a frequent problem in benchmarks for huge text 
corpora, where complete judgment is impossible

E.g. all relevant documents for "tom hanks" on the web

25



Evaluation   6/6

 Overfitting

– Tuning parameters / methods to achieve good results on 
a given benchmark is called overfitting

In an extreme case: for each query from the benchmark, 
output the list of relevant docs from the ground truth

– In a realistic environment (real search engine or com-
petition), one is given a training set for development

The actual evaluation is on a test set, which must not 
be used / was not available during development

For ES2, do the development / tuning on some queries 
of your choice, then evaluate without further changes 
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