
Chair for Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Patrick Brosi

Information Retrieval
WS 2016/2017

http://ad-wiki.informatik.uni-freiburg.de/teaching

Exercise Sheet 3
Submit until Tuesday, November 15 at 2:00pm

For this exercise sheet, you can use Java or C++, but not Python. Subtle algorithmic impro-

vements and performance tuning make little sense in Python, due to the large overhead of the

underlying data structures, in particular of the Python lists/arrays.

Copy the code provided on the Wiki (which is similar to the basic version of the code written

during the lecture, without the performance improvements) and proceed from there. It is available

in both Java and C++. It contains code for reading posting lists from the given files, for the

baseline intersection, and for time measurement, as well as tests for the intersection method(s).

Exercise 1 (20 points)

You have been hired to prove that the city of Bielefeld’s existence is, in fact, an illusion created

by them. Your employer provides you with Wikipedia’s posting lists for “bielefeld”, “them” and

“existence”. Your job is to find documents relevant to the investigation. You only have slow code

at hand and time is of the essence!

1. (10 points) Implement a new method for intersecting two posting lists that uses at least three

non-trivial ideas presented in the lecture. The goal is to beat the baseline implementation from

the lecture for all scenarios. Note that you can also implement several algorithms and switch

between them depending on the sizes of the input lists (or depending on any information that

you find to be useful). Each implemented method must pass the test case provided for the baseline

implementation in the example code!

2. (10 points) Evaluate your algorithm on all three pairwise combinations of the three posting

lists bielefeld.txt, them.txt and existence.txt on the Wiki. Report the results from your evaluation

in the table on the Wiki, following the baseline rows already there.

[they want you to turn over]

http://ad-wiki.informatik.uni-freiburg.de/teaching


Commit your code to a new sub-directory sheet-03 of your folder in the course SVN.

You must implement (at least) the test cases from the IntersectTest.java or IntersectTest.cpp

file in the example code and your code must run through on Jenkins without errors. Otherwise

your submission will not be graded. This goes without saying from now on. The reasons for

these requirements were explained in Lecture 1 and repeated / elaborated on at the beginning of

Lectures 2 and 3.

As usual, summarize your experiences and insights in your experiences.txt. As a minimum, say

how much time you invested and if you had major problems, and if so, where. Please be brief and

informative: that makes reading your feedback much more pleasant for us.


