
Chair for Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Patrick Brosi

Information Retrieval
WS 2016/2017

http://ad-wiki.informatik.uni-freiburg.de/teaching

Exercise Sheet 1
Submit until Tuesday, October 25 at 2:00pm

Exercise 1 (10 points)

Extend the code from the lecture by the following functionality. See the back side of this sheet

for our (mandatory) guidelines about coding exercises in this course.

1. Make sure that each inverted list contains a particular record id at most once, even if the

respective word occurs multiple time in the same record. Make sure that the whole construction

algorithm still runs in time linear in the number of words in the input.

2. Write a function intersect that computes the intersection of two inverted lists. The function

must run in time linear in the total number of elements in the two lists.

3. Write a function that, given a keyword query, fetches the inverted lists for each of the keywords

and computes their intersection (empty, if there is no inverted list for one of the keywords).

4. Your main function should construct an inverted index from a given text file (one record per

line, file name given as first argument on the command line) and then, in an infinite loop, ask the

user for keyword queries and output 3 matching records. Optionally (= not mandatory to get full

points) highlight the query words in the output, e.g., using ANSI escape codes.

Exercise 2 (5 points)

Try your code on the file movies.txt on the Wiki. Find a query that gives good results (the records

shown meet your expectations) and one that does not. Write them in your experiences.txt (see

below), and very concisely (in one or two sentences) explain why one works and the other doesn’t.

Exercise 3 (5 points)

Register with our course system Daphne (using your RZ account + password for authentication).

Make sure that you are reachable under the specified e-mail address. Check out a working copy

of your folder in the SVN repository of the course, and add your code to a new subdirectory

sheet-01, and commit it. Make sure that everything runs through without errors on Jenkins.

Submissions that do not pass Jenkins will not be graded — Lecture 1 explains why

[please turn over with anticipation]

http://ad-wiki.informatik.uni-freiburg.de/teaching


Also commit, in that subdirectory, a text file experiences.txt where you briefly describe your

experiences with the first exercise sheet and the corresponding lecture. As a minimum, say how

much time you invested and if you had major problems, and if yes, where.

Guidelines for the coding exercises (mandatory + valid throughout the course):

1. You can code in Python, Java, or C++. You can make different choices for different exercise

sheets. In the lecture, we will often use Python, which will allow us to focus on the conceptual

issues. When efficiency is a central issue, we will use Java or C++.

2. For some exercise sheets, the code from the lecture will be available only in Python. You are

still free to use Java or C++ for those sheets, but it will be more work for you then.

3. If the exercise sheet mentions a TIP file (the sheet above doesn’t), read it. It contains the exact

specifications of what to compute. It may also contain valuable implementation advice (which

you can but do not have to follow).

4. Our coding conventions must be followed at all times. In particular:

4.1 You have to write a unit test for each non-trivial method. One non-trivial example per unit

test is enough. All unit tests must be fast. If your test reads an input file, that file must be small.

4.2 You have to adhere to our coding style.

4.3 You have to provide a standard build/make file along with your code and you have to make

sure that everything runs through without errors on our continuous build system (Jenkins).

You find example code for all three languages in the public/code/lecture-01 folder in the SVN.

5. Make sure that you do not upload any “by-products” to our SVN (e.g., class files or executables

or any stuff from your local environment). Also never ever upload large data files to our SVN;

this is considered sin and will result in excommunication.

6. When you encounter implementation problems, proceed as follows. First do the obvious Google

search: very often, this leads to a page describing exactly the problem you are having and the

solution for it. Then search/read our forum (link on the Wiki) to see if someone has already asked

a similar question. Then you are very welcome to ask a question on the forum yourself. Do ask

before you spent a lot of time on minor implementation issues.

7. You are allowed to work on the exercises in groups of at most two. If you want to work

in such a group, send a mail with the name of both of your RZ accounts to Axel Lehmmann

(lehmann@cs.uni-freiburg.de). He will then create a joint subfolder for you in our SVN.


