
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 13, Tuesday February 2nd, 2016
(Knowledge Bases, SPARQL, Translation to SQL)

Overview of this lecture

 Organizational

– Your experiences with ES12 (Statistical Significance)

 Content

– Statistical tests again some clarifications

– Knowledge bases motivation + examples

– SPARQL standard query language for KBs

– SQLite lightweight database software

– SPARQL to SQL algorithm + example

– Performance making it fast

– Exercise Sheet 13: Implement SPARQL  SQL translation
and use to process SPARQL queries with Python+SQLite

2

Experiences with ES12 1/3

 Summary / excerpts

– Topic + exercise was interesting and useful

– Not too much work

– Technical details behind the T-Test were not clear

I skipped this part for time reasons and the explanation on
the slides were sup-optimal … see slides 6 – 11

– Why two-sided test and not one-sided test

Good question … it was discussed on the forum

– p-value very small for the large test set … see next slide

3

Experiences with ES12 2/3

 Results

– Most improvements are by a few percent, for example:

74% →	80%, 66% →	68%, 69.8% →	73.2%, …

– Sometimes, the changes even make the results worse

A common research experience when trying to improve stuff

– The p-values for 50 or 200 examples are very large

Understand that this does not mean that the variant is not
really better … it means that the evaluation does not prove it
(the difference might as well be due to random fluctuations)

– The p-values for 3140 ex. is small, even for small differences

For example, p = 0.2% for a 3.4% difference

4

Experiences with ES12 3/3

 Bottom line

– With few measurements (for ES12: tens or hundreds),
even medium improvements are hardly significant

– With many measurements (for ES12: thousands), even
small improvements can be significant

– Understand: statistical tests never show that the hypothesis
(our actual interest) is likely

For ES12: we have proven nothing about the likeliness that
the sophisticated Perceptron is better than the baseline

They only ever estimate how unlikely the null hypothesis is

For ES12: that the difference in precision is due to chance

5

Statistical Tests – Clarifications 1/6

 Mathematics behind the Z-Test and T-Test

– I decided to skip that in the last lecture

It's mathematically more demanding than what we did
so far, and there was not too much time available

When preparing the lecture, I tried to take away as
much as possible from the complexity … but not very
successfully so, it's still relatively hard

– Bottom line: you do not need to know the mathematical
details behind the Z-Test and T-Test for the exam

The rest of what we did in Lecture 12 is of course
relevant for the exam though

6

Statistical Tests – Clarifications 2/6

 Biased vs. unbiased estimators

– Let X1, …, Xn be independent identically distributed
random variables with mean µ und variance σ2

– Since we don't know the underlying µ and σ2, we
estimate them as follows

M = ∑ Xi / n S2 = ∑ (Xi - M)2 / n

– Mathematically, it seems reasonable to ask that these
estimates do the right thing "on average", namely:

E M = µ E S2 = σ2

– With the definitions above, this is indeed true for M,
but for S2 as defined above: E S2 = (1 – 1/n) · σ2

7

Statistical Tests – Clarifications 3/6

 Biased vs. unbiased estimators, continued

– Alternatively, we can define S2 = ∑ (Xi - M) / (n – 1)

– This estimate is called unbiased because E S2 = σ2

– In practice, the unbiased estimator is used more often

It's not wrong to used the biased estimator though …
in the last lecture, I chose it because of simplicity

Also note that for large values of n, the difference
between the two (a factor 1 – 1/n) is negligible

– For similar reasons, one often subtracts 1 from the
number of measurements (per sequence) for the T-Test

For our example from Lecture 12: n – 2 instead of n

8

Statistical Tests – Clarifications 4/6

 Mistake on slide 31 of last lecture

– We correctly computed the estimates σ1
2 and σ2

2 of the
variances of the two series of measurements

We computed unbiased estimates, but that was ok

– Then we computed the total variance as σ2 = σ1
2 + σ2

2

That was a mistake, we should have computed the total
variance as the average σ2 = (σ1

2 + σ2
2) / 2

Then the value for x becomes larger (by a factor of √2)
and the (two-sided) p-values becomes smaller:

Z-Test: σ2 = 1.5  x = 2.3094  p = 2.1%
T-Test: σ2 = 1.5  x = 2.3094  p = 5.0%

9

Statistical Tests – Clarifications 5/6

 Intuition of the x-value

– Recall the values from the previous slide:

Z-Test: σ2 = 1.5  x = 2.3094  p = 2.1%
T-Test: σ2 = 1.5  x = 2.3094  p = 5.0%

– Understand that x and p have the following "meaning":

p: the probability that what we see happened by chance

x: what we see is as (un)likely as a random variable from
the assumed distribution deviates by x times or more
the standard deviation from its mean

one-sided test: deviation in one direction

two-sided test: deviation in either direction

10

Statistical Tests – Clarifications 6/6

 R-Test vs. Z-Test and T-Test

– For the example in the last lecture, the R-Test had a
much larger p-value (18%) than the Z-Test or T-Test

– Reason: the Z-Test and T-Test make assumptions on the
underlying distribution

These assumptions become more and more reasonable
for large n but can be quite unrealistic for small n

– However, the R-Test requires (extensive) computation

In the old days, that was simply not feasible

Nowadays, with ubiquitous access to computers, the
R-Test is the method of choice

11

Knowledge Bases 1/4

 Definition

– A knowledge base is a database of statements about
entities and their relations

Critical: unique identifiers for each entity and relation

– A common format / schema is to express all statements
as subject predicate object triples:

Brad Pitt acted in Mr. and Mrs. Smith
Brad Pitt acted in Burn After Reading
Angelina Jolie acted in Mr. and Mrs. Smith
Joel Cohen directed Burn After Reading
Ethan Cohen directed Burn After Reading
Brad Pitt married to Angelina Jolie

12

Knowledge Bases 2/4

 Freebase and WikiData

– Freebase is the largest open general-purpose KB to date

Started by Metaweb in 2007, acquired by Google in 2010

Current size: ≈3 billion triples on ≈50 million entities

Freebase has become read-only in March 2015 and most of
its data will eventually be merged into WikiData

– WikiData is the soon-to-become largest open general-
purpose knowledge base to data

WikiData is the "Wikipedia" among the knowledge bases

Current size: ≈80 million triples on ≈20 million entities

13

Knowledge Bases 3/4

 Reification

– Restriction to triples is no real restriction: n-ary
relationships can also be represented as triples:

m/0jy6xg film Finding Nemo
m/0jy6xg actor Ellen DeGeneres
m/0jy6xg character Dory
m/0jy6xg type Voice

m/0jy6xg is an entity name from Freebase

In the example above, it's a so-called mediator, which
serves as a link between the entities it connects

14

Knowledge Bases 4/4

 Relation to the "Semantic Web"

– The Semantic Web initiative is concerned with making
knowledge base data explicitly available on the web

Variant 1: semantic mark-up in normal web pages

Typical format: Microdata or JSON-LD

Variant 2: web pages containing only structured data

Typical format: RDF

– No rules that enforce consistent entity or relation names

The hope is that people adhere to standards nevertheless,
and that machines can resolve the remaining heterogeneity

Anyway: this is not the topic of this lecture / course

15

SPARQL 1/5

 Definition

– The standard query language for knowledge bases

SPARQL = SPARQL Protocol And RDF Query Language

– Example query in natural language: actors who are
married and starred together in at least one movie

– The same query expressed in SPARQL

SELECT ?person1 ?person2 ?film WHERE {
?person1 acted_in ?film .
?person2 acted_in ?film .
?person1 married_to ?person2

}

16

SPARQL 2/5

 Syntax

– In the lecture today, we use a simplified syntax

See the example from the last slide

– The actual SPARQL syntax is slightly more complicated and
has many more features

In particular, it involves namespaces, so that names can be
made globally unambiguous

See the Wikipedia page or the W3C specification if you are
interested

Not relevant for our lecture today

17

SPARQL 3/5

 SPARQL queries as subgraphs

– On can view a knowledge base as a graph, where the
nodes are the entities, and the edges are the relations

– A SPARQL query is then a sub-graph with variables at
some or all of the nodes

– Solving the query then amounts to finding all matches of
the subgraph in the (large) knowledge base graph

18

SPARQL 4/5

 Relation to SQL

– Data from a KB can be stored in an ordinary database

This is also what we do in the lecture and for ES13

– The standard query language for databases is SQL

SQL = Structured Query Language

19

SPARQL 5/5

 SQL example

– Assume we have two tables film (with columns actor and
movie) and spouse (with columns person1 and person2)

– Our example query can be expressed in SQL as follows:

SELECT spouse.person1, spouse.person2
FROM spouse, film as film1, film as film2
WHERE spouse.person1 = film1.actor
AND spouse.person2 = film2.actor
AND film1.film = film2.film;

20

SQLite 1/4

 A full-fledged database, easy to install and use

– On Debian/Ubuntu install with: sudo apt-get install sqlite3

– Two types of commands … examples on next slides

SQL commands: must end with a semicolon

SQLite commands: start with a dot, no semicolon at end

– Two modes to start SQLite:

sqlite3 will work on an in-memory database

sqlite3 <name>.db create database in that file, and if file
exists, use database from that file

Let's read our example tables in SQLite using the
commands from the next two slides … it's easy

21

SQLite 2/4

 Some useful SQLite commands by example

– Specifies the column separator used for input and output

.separator " " use Ctrl+V TAB for TAB !

– Read table from TSV (tab-separated values) file

.import film.tsv film

– Execute commands from script file (typical suffix is .sql)

.read <file with commands>

– Show execution time of every command

.timer on

22

SQLite 3/4

 Some useful SQL commands by example

– Create a table with a given schema

CREATE TABLE film(actor TEXT, movie TEXT);

– Create an index for a column of a table

CREATE INDEX file_index ON film(actor);

– Extract / combine data from tables

SELECT * FROM film WHERE … LIMIT 100;

– Delete table / index (without error msg if it's not there)

DROP TABLE IF EXISTS film;

DROP INDEX IF EXISTS film_index;

23

SQLite 4/4

 Python interface to SQLite

– Executing SQL commands to a SQLite database from
within Python is very easy:

import sqlite3
db = sqlite3.connect("example.db")
cursor = db.cursor()
cursor.execute("SELECT * FROM table")
for row in cursor.fetchall():

entries = [str(entry) for entry in row]
print("\t".join(entries))

Beware: the SQLite command (starting with a dot) cannot
be executed from within Python, you need SQLite for those

24

SPARQL to SQL Translation 1/4

 Motivation

– We want to translate a given SPARQL query to a SQL
query that gives the desired results on a given database

– In the following example, we use one table per relation

CREATE TABLE film(actor TEXT, film TEXT)
CREATE TABLE spouse(person1 TEXT, person2 TEXT)

Note: all elements from one table are from one relation,
so we don't need to store the relation name in the table

For ES13, use one big table for all the data, with
three columns named subject, predicate, object

25

SPARQL to SQL Translation 2/4

 Example

– SPARQL query

SELECT ?p1 ?p2 ?f
WHERE {

?p1 film ?f .
?p2 film ?f .
?p1 spouse ?p2

}

26

SPARQL to SQL Translation 3/4

 Algorithm

– It is up to you in ES13, to design a generic algorithm
that works for arbitrary basic SPARQL queries

Of the form SELECT <vars> { <triples> }

– The algorithm is not difficult, but requires understanding
of how the data is stored and SPARQL and SQL work

So perfect exercise to understand the basics !

– On the next slide we give you valuable advice

27

SPARQL to SQL Translation 4/4

 Algorithm, advice for ES13

– If there are k query triples in the SPARQL query, have k
entries in the FROM clause of the SQL query

FROM freebase as f1, freebase as f2, ... , freebase as fk

– In your code, for each variable from the SPARQL query,
build an array of all its occurrences in the query, e.g.

?x: f1.subject, f2.object, f5.object

– Then, when building the SQL query, add the corresponding
equalities to the WHERE clause, e.g.

WHERE f1.subject = f2.object AND f2.object = f5.object

Note: if ?x occurs m times, m – 1 equalities are enough

28

Performance 1/4

 Cross product of tables

– Understand that, conceptually, an SQL statement like

SELECT … FROM T1, T2, …, Tk WHERE …

selects elements from the cross-product

T1 × ··· × Tk (which has |T1| · ··· · |Tk| elements)

(where some or all of the Ti can be the same table)

29

Performance 2/4

 Joining of tables

– The WHERE … = … effectively ask for a JOIN

– This JOIN effectively asks for a list intersection

– If we CREATE an index for the respective tables on the
respective join attributes, this list intersection gets fast

E.g., by sorting (a copy of) the table by that attribute

30

Performance 3/4

 Join ordering

– Typical SQL-from-SPARQL queries require multiple joins

– Order of joins can make a huge performance difference

– For our example query, the film table (actors – films) is
more than ten times larger than the spouse table

– Join order 1: look at all married couples and for each get
their films and check whether they overlap

materializes list of films of all married people (small)

– Join order 2: look at all pairs of actors who played in the
same film, and for each check whether they are married

materialized all pairs of actors from same film (large)

31

Performance 4/4

 Join ordering, continued

– Without further ado, SQLite seems to take the order of
the tables in the FROM clause as its join order

SELECT spouse.person1, spouse.person2
FROM film as film1, film as film2, spouse
WHERE spouse.person1 = film1.actor
AND spouse.person2 = film2.actor
AND film1.movie = film2.movie;

Alternatives: (note that there are 6 possible orderings)

FROM spouse, film as film1, film as film2

FROM spouse, film as film2, film as film1

32

References

 Textbook

– Nothing about this topic in the text book by Manning,
Raghavan, and Schütze

 Wikipedia

– http://en.wikipedia.org/wiki/Ontology_(information_science)

– http://en.wikipedia.org/wiki/SPARQL

– http://en.wikipedia.org/wiki/SQL

– http://en.wikipedia.org/wiki/SQLite

– http://en.wikipedia.org/wiki/Freebase

33

