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Overview of this lecture

 Organizational
– Your experiences with ES11 Perceptrons

– The official evaluation of this course

 Contents
– Perceptron refinements recap + two new ones

– Hypothesis testing motivation + terminology

– Randomization test example + program

– Z-Test and T-Test example + math behind

– Exercise Sheet 13: improve basic Perceptron algorithm + 
check whether the improvement is statistically significant
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Experiences with ES11   1/2

 Summary / excerpts
– Nice + interesting exercise again

– The proof was easy / nice / doable / ok

– Numpy still annoying, but getting used to it

– Problems with operations between numpy and scipy 

– Lack of time due to other courses and deadlines

– Linear algebra rulez … YES !
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Experiences with ES11   2/2

 Results
– Precision is comparable to that of Naïve Bayes

Comedy vs. Thriller: Perceptron 87% NB 85%

R vs. Non-R: Perceptron 70%   NB 74%

– The training is much slower than for Naïve Bayes

It can be made much faster using "batching" … see slide 10

– The top words are more meaningful than with Naïve Bayes

Comedy vs. Thriller: comedy, thriller, noir, suspense, …

R vs. Non-R: pg, spielberg, sex, slasher, neo, … 
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Official course evaluation   1/2

 Instructions
– You should have received an email from EvaSys Admin

on Monday, January 25 with a link to an evaluation form

– We are very interested in your feedback

– Please take your time for this

– Please be honest and concrete

– The free text comments are most interesting for us

Please complete by Tuesday, February 9

The evaluation is centralized, and will be closed after 
that date, and there is nothing we can do about that
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Official course evaluation   2/2

 Why you should invest the time
– If you have done the exercise sheets:

Compared to the effort for the sheets, the evaluation is 
a piece of cake … take it

– If you have not done the exercise sheets:

If we receive much less feedback than in the last years, 
exercise sheets will be mandatory again next year

– If you have neither did the exercise sheets nor attended 
the lectures nor listened to the recordings:

Well … good luck with the exam
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Perceptron Refinements   1/4

 Refinements we already discussed
– Change the (pre-determined) number of iterations

– Terminate when change in precision (on training set) 
drops below a certain threshold

– Remove frequent words

– Use tf.idf instead of tf to represent documents

– Use different / additional features, e.g. word bigrams
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Perceptron Refinements   2/4

 Averaging
– Take the average of all w from all iterations … including 

all the iterations where w did not change

That is, if you have 10 iterations and a training set of 
size 100, you take the average of 1000 w vectors

– Intuition 1: the final changes to w are due to relative 
few documents (which are still misclassified)

Averaging de-emphasizes the w vectors from the end

– Intuition 2: good values of w are not changed for many 
iterations (where they classify elements correctly)

Averaging emphasizes those "good" w vectors

8



Perceptron Refinements   3/4

 Logistic Regression
– Let S(t) = 1 / (1 + e-t) … then S(w ● x) can be 

interpreted as the probability that x is classified as +1

– We can now try to find the w such that the observed 
data is most likely … another instance of MLE

– This gives the following refined update step:

Class of x is +1 : w ←	w + α ∙ a ∙ x

Class of x is –1 : w ←	w – α ∙ a' ∙ x  

where a = 1 - S(w ● x) and a' = S(w ● x) and α is a 
tuning parameter (the so-called learning rate)
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Perceptron Refinements   4/4

 Batching
– Given a w, consider a whole batch B of training elements

The size of the batch is a parameter to play around with

– For each xi ϵ B compute update term with respect to w

Simple Perceptron:       + x if class is +1, –x otherwise

"Logistic" Perceptron:   + α ∙ a ∙ x … or … – α ∙ a' ∙ x

– Then add all the update terms to w to obtain a new w

Batching mainly improves performance (a lot), but it also 
affects the precision (since it leads to a different w)

10



Hypothesis Testing   1/6

 Motivation
– Typical situation in research: compare the outcome

of two experiments

E.g. in the life sciences: health status for two groups of 
people, one taking a particular medication and one not

E.g. in computer science: the performance of two systems,
using different algorithms or different parameter settings

– The outcome of the experiments will be different

But even carrying out the same experiment twice will give 
different results because of random fluctuations

Key question: how to tell a "real" difference between the 
two experiments from mere random fluctuation
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Hypothesis Testing   2/6

 Example 1:  Prediction of coin tosses
– Ten predictions in a row, C = correct, W = wrong

CCCCCCCCCC        (all ten predictions are correct)

– Do we believe in this person's ability to predict?

– Let's assume H0 = the person cannot predict, that is,
is just making random guesses … with Pr(C) = ½ 

H0 is called the null hypothesis … see slide 14

– Then Pr(all ten correct | H0) = 2-10 ≤ 0.001 = 0.1%

Very unlikely that this great prediction was mere chance
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Hypothesis Testing   3/6

 Example 2: Prediction of coin tosses
– Let us now assume a slightly less stellar prediction:

CCCWCCCWCC         (8 correct, 2 wrong)

– What is now the probability that this is due to chance?

Note: we should not ask for the probability of exactly 8
correct guesses to happen; it makes more sense to ask 
for the prob. of 8 or more correct guesses to happen

– Pr(≥ 8 correct | H0) = 
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Hypothesis Testing   4/6

 General approach
– Hypothesis H e.g. ability to predict coin tosses

– Null hypothesis H0 e.g. random guessing (the opposite of H)

– Compute the probability p of the given or more extreme
data assuming that H0 is true
This probability p is called the p-value

– If p is small enough, the observations are said to be 
statistically significant with significance level p
In the life sciences, people are usually happy with values 
of p < 0.05 (moderate significance) p < 0.01 (strong sign.)
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Hypothesis Testing   5/6

 Example 3: two dice with unknown distribution
– Two dice A and B, four rolls each

A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Null hypothesis H0 = the two dice A and B are identical

– Given H0, what is the probability of observing A and B

This will be our running example for the rest of todays
lecture
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Hypothesis Testing   6/6

 Well known hypothesis tests
– R-Test:  simple + makes no probabilistic assumptions

– Z-Test: assume normal distribution with fixed variance

– T-Test: like Z-test, but also model variance distribution
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R(andomization)-Test   1/3

 One of the simplest statistical tests
– Assume we have two series of measurements, A and B

– Null hypothesis = no difference between A and B

– Then we can assume that the measurements come from 
one experiment + assignment to either A or B is arbitrary

– The R-Test considers all 2n possible assignments of the n
measurements to either A or B

– For each assignment, compute the difference Δμ of the 
means, and see if it is ≥ the Δμ on the observed data

The fraction of assignments for which this is the case is 
the p-value according to the R-Test
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R(andomization)-Test   2/3

 Application to our dice example
A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Here are some of the 28 possible assignments of these 8
measurements to either A or B and the respective Δμ

Note: we ignore the two assignments, where all 
measurements are assigned all to A or all to B, because 
we can't compute a meaningful mean difference then
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R(andomization)-Test   3/3

 Continuation of the example
– Let's write a program together to iterate over all 28 – 2 

assignments and compute the p-value as explained

– Observation: for 46 of the assignments, the difference
of the means is 2 or larger  p = 46 / 254 ≈ 18.1%

– Note: for a small number n of measurements, we can 
easily try out (on a computer) all 2n – 2 assignments

But for larger n, this quickly becomes infeasible

For n = 30 we already have 230 ≈ 1 billion assignments

Then we can take a (large enough) random sample of 
assignments and compute the fraction for those
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Z-Test and T-Test   1/12

 Assumptions
– The Z-Test and the T-Test both assume an underlying 

probability distribution

– Z-Test: underlying normal distribution

– T-Test: underlying t-distribution

– Then, for our setting, the p-value is Pr(M ≥ Δμ), where:

M is a random variable, modelling the difference of the 
means with the assumed probability distribution

Δμ is the value of M on the observed measurements

As a preparation, let us recap (on the next slides) some 
foundations from probability theory …
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Z-Test and T-Test   2/12

 Random variables
– Continuous random variable X = range is R

– Cumulative distribution function: Φ(x) = Pr(X ≤ x)

In particular: limx∞ Φ(x) = 1

– Mean: E X ≔ ∫ (1 - Φ(x)) dx

In the discrete case, E X = ∑k Pr(X ≥ k) 

– Variance: var(X) ≔ E (X – E X)2 = E X2 – (E X)2

The square root of the variance is often called standard 
deviation, and often denoted by σ … then var(X) = σ2
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Z-Test and T-Test   3/12

 Basic linearity properties of E and var :
– For all X, Y it holds that: E (X + Y) = E X + E Y

Surprising but true: even if X and Y are dependent

– For X, Y independent: var(X + Y) = var(X) + var(Y)

Not generally true when X and Y are dependent

– For X and any real a : var(a ∙ X) = a2 ∙ var(X)      

This can be easily proved from the definition of var
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Z-Test and T-Test   4/12

 The normal distribution
– Assumed as the underlying distribution in many scenarios

In the life sciences as well as in computer science

– Two parameters: the mean μ and the variance σ2

The corresponding distribution is denoted by N(μ, σ2)

– We will need to compute Pr(X ≥ x) where X has normal dist.

There is no closed formula for this … in the ancient past, 
lookup tables were used

For ES12, use scipy.stats.norm.cdf to obtain Pr(X ≤ x)
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Z-Test and T-Test   5/12

 Properties of the normal distribution
– Property 1: If X has distribution N(μ, σ2), then

(X – μ) / σ has distribution N(0, 1)

Every normal distr. can be reduced to N(0, 1) by scaling

– Property 2: If X1 has distribution N(μ1, σ1
2) and X2 has 

distribution N(μ2, σ2
2), and X1 and X2 are independent

then X1 + X2 has distribution N(μ1 + μ2, σ1
2 + σ2

2)

The sum of normal random variables is again normal
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Z-Test and T-Test   6/12

 Properties of the normal distribution, continued
– Property 3: Let X1,…,Xn be n i.i.d. (independent 

identically distributed) random variables, each with
mean μ and variance σ2 . Then (X1 + … + Xn) / n
converges to N(μ, σ2) as n  ∞

This is known as the Central Limit Theorem

It is the reason why the normal distribution is a natural 
assumption for many quantities observed in the world

(for example, think of the running time of a loop with n 
iterations, and Xi = the time for the i-th iteration)

25



Z-Test and T-Test   7/12

 The χ2 distribution                χ = small Greek letter "chi"

– Let Z1, …, Zn be i.i.d. from N(0, 1)

– Then the distribution of Z = Z1
2 + … + Zn

2 is defined as:

the χ2 distribution with n degrees of freedom aka χ2(n)

– Consider measurements X1, …, Xn , each from N(μ, σ2)

Let M = Σ Xi / n be the estimated mean,  E M = μ

Let S2 = Σ (Xi – M)2 / n be the estimated variance, E S2 = σ2

Then S2 ∙ n / σ2 = Σ ((Xi – M) / σ)2 has a χ2(n) distribution

Intuitively: the variance of a series of measurements
has a χ2 distribution (up to scaling)
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Z-Test and T-Test   8/12

 Student's t-distribution
– Let us define it by how we pick a random X from it, in

comparison to the standard normal distribution:

Standard normal distribution: pick X from N(0, 1)

T-distribution with n d.o.f: pick V from χ2(n), then
pick X from N(0, n / V)

– Note that E V = n (slide 26) and that for n  ∞ we have
V / n  1 and the two distributions become the same

Actually, there is a marked difference between the two 
distributions only for small n, say n ≤ 50

For ES12, use scipy.stats.t.cdf to obtain Pr(X ≤ x)
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Z-Test and T-Test   9/12

 More intuition about the difference
– By also considering the variance as a random variable, 

the t-distribution is less concentrated around its mean 
than the corresponding normal distribution

– Here is an example which provides some intuition

Experiment 1:  pick X uniformly from [-10, 10]

Experiment 2: first pick V uniformly from [5, 15],
then pick X uniformly from [-V, V]

Now extreme values (< -10 or > 10) become more 
likely, and values around  the mean become less likely

Note that the mean remains zero in Experiment 2
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Z-Test and T-Test   10/12

 The Z-Test assumption: underlying normal distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let S2 = (Σ (X1j – M1)2 + Σ (X2j – M2)2) / (n/2) be the est. var.

– Let Δμ and σ be the observed value of M and S, respectively

– H0: all Xij ~ N(µ, σ2)

Naïve assumption: the real variance is the observed variance

– Then Z = √n ∙ M / (2σ)  has distribution N(0, 1)

– The p-value of the Z-Test is then Pr(M ≥ Δμ) = Pr(Z ≥ x) 
where x = √n ∙ Δμ / (2σ)
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Z-Test and T-Test   11/12

 The T-Test           assumption: underlying t-distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let S2 = (Σ (X1j – M1)2 + Σ (X2j – M2)2) / (n/2) be the est. var.

– Let Δμ and σ be the observed value of M and S, respectively

– H0: all Xij ~ N(µ, S2), S2 ~ σ2 / (V/n), V ~ χ2(n) with n d.o.f.

More realistic: the underlying variance is a random variable

– Then T = √n ∙ M / (2S) has t-distribution with n d.o.f.

– The p-value of the T-Test is then Pr(M ≥ Δμ) = Pr(T ≥ x), 
where x = √n ∙ Δμ / (2σ)
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Z-Test and T-Test   10a/12

 The Z-Test improved slide, for use in future course
– Given two series X1 and X2 of a total of n measurements

Common unknown mean µ = E Xij and variance σ = var Xij

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let S2 = (Σ (X1j – M1)2 + Σ (X2j – M2)2) / (n-1) be the est. var.

– Let m and s be the observed value of M and S, respectively

– Assumptions: M normal dist (reasonable) and s = σ (naïve!) 

– Normalization: Define Z = √n ∙ M / (2s) … then E Z = 0 and
var Z = 1, and hence Z ~ N(0, 1)

– P-value: Pr(Z ≥ x) where x = √n ∙ m / (2s)

The probability that Z is ≥ it's observed value
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Z-Test and T-Test   11a/12

 The T-Test   improved slide, for use in future course
– Given two series X1 and X2 of a total of n measurements

Common unknown mean µ = E Xij and variance σ = var Xij

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let S2 = (Σ (X1j – M1)2 + Σ (X2j – M2)2) / (n-1) be the est. var.

– Let m and s be the observed value of M and S, respectively

– Assumptions: M normal dist and S2 has χ2 dist (both reasonable)

– Normalization: Define Z = √n ∙ M / (2σ) ~ N(0,1) and V = S2/σ2

∙ n ~ χ2(n) … then T = √n ∙ M / (2S) = Z / √(V/n) ~ t-dist(n)

– P-value: Pr(T ≥ x) where x = √n ∙ m / (2s)

The probability that T is ≥ it's observed value
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Z-Test and T-Test   12/12
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 Back to our rolling dice example
– Recall our two series of dice rolls

A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Observed difference of means Δμ is  :

– Observed estimated variance σ2 is    : 

– Value x of √n ∙  Δμ / (2σ) is  :

– Z-test: p-value Pr(Z ≥ x) is :

– T-test: p-value Pr(T ≥ x) is :

For "two-sided" test, simply multiply p-value by 2
This is a mistake: σ2 should be the average of σ1

2 and σ2
2, not the sum

hence σ2 = 1.5 and not 3 … the numbers below change accordingly
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