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Overview of this lecture

 Organizational
– Your results + experiences with ES9 k-means

– Date and place for the exam

 Contents
– Classification introduction and examples

– Probability recap two one-slide crash courses

– Naïve Bayes algorithm, example, implementation

– Exercise Sheet 10:  learn to predict the genre and rating
from a given movie description using Naïve Bayes
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Your experiences with ES9

 Summary / excerpts
– Quite hard and time-consuming for many of you

– Bug in sparse normalization we provided

Was pointed out on the forum and then fixed soon

– Using numpy / scipy in the right way was non-trivial

– Easy to make small mistakes which are hard to debug

– Still lots of problems getting the linear algebra right

– For the geometric toy example from the lecture, normalizing 
the points gives different clusters … was explained in forum

– Great support on the forum, at all times 
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Your results for ES9

 For our dataset   (≈ 200.000 docs, 50 clusters)

– Relatively few iterations (20 - 30) are enough

– Pretty fast, even with Python (≈ 1 second / iteration)

That is the power of linear algebra: two years ago, even the 
C++ implementations were 10 x slower on a smaller dataset

– Some centroids are meaningful, others not so much:

written silent british comedy American starring frank

it was at won nominated awards academy award best

s an the her in to of story about who

jung jin park korea soo ki lee kim south korean
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Exam

 Written exam
– For all except the B.Sc. Computer Science students

– Date: Tuesday, February 23, 2016   14 – 16 h

– Place: HS026 … and maybe also HS036

Depends on the number of participants

 Oral exam
– Only for the B.Sc. Computer Science students

– Date: Wednesday, February 24, 2016, afternoon

A time slot will be allocated to you by the Prüfungsamt

– Place: my office (building 51, second floor, room 28)
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Classification   1/5

 Problem
– Given objects and classes

– Goal: given an object, predict to which class it belongs

– To achieve that, we are given a training set of objects, 
each labeled with the class to which it belongs

– From that we can (try to) learn which kind of objects 
belong to which class

– Two examples on the next two slides
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Classification   2/5

 Example 1 (natural language text)
– Training set of documents, each labeled with its class

Flying Saucer Rock n Roll from 1998 is a 12-minute spoof of
a 1950s black and white science fiction B-movie …   Comedy

Tainted is a 1988 low-budget suspense drama about a school 
teacher married to the owner of a crematorium …      Thriller

Toby the pup in the museum is he first cartoon in a series of 
twelve. Toby works as a janitor in a museum ... Animation

– Prediction

Heavy Times one summer afternoon, out of boredom and peer 
pressure, three best friends go to visit … which class?
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Classification   3/5

 Example 2 (artificial documents)
– Training set of documents, each labeled with its class

aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B

Just two words (a and b, spaces omitted), and two classes

– Prediction
abababa which class?
baaaaaa which class?
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Classification   4/5

 Difference to K-means
– K-means can also be seen as assigning (predicting) a

class label for each object … each cluster = one class

– Difference 1: the clusters have no "names"

– Difference 2: k-means has no learning phase (where it 
could learn how objects and classes relate)

This is called unsupervised learning … in contrast, a 
method like Naïve Bayes does supervised learning

– Difference 3: classification methods do soft clustering
= for each object, output a probability for each class

But one often wants only the most probable class
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Classification   5/5

 Quality evaluation
– Given a test set of labeled documents, and the 

predictions from a classification algorithm

– For each class c let:

Dc = documents labeled c (in the test set)

Dꞌc = documents classified as c   (by the algorithm)

– Then (note that these are per class)

Precision P ≔ |Dꞌc ∩ Dc| / |Dꞌc|
Recall R ≔ |Dꞌc ∩ Dc| / |Dc|
F-measure F ≔ 2 ∙ P ∙ R / (P + R)

Note that P = R = F = 100% if and only if Dc = Dꞌc 
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Probability recap   1/3

 Motivation
– In this lecture, we will look at Naïve Bayes, one of the 

simplest (and most widely used) classification algorithms

– Naïve Bayes makes probabilistic assumptions

– For that, two very basic concepts from probability theory 
need to be understood:

Maximum Likelihood Estimation (MLE)

Conditional probabilities and Bayes Theorem

– The following two slides are to refresh your memory 
concerning both of these
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Probability recap   2/3

 Maximum Likelihood Estimation (MLE)
– Consider a sequence of coin flips, for example

HHTTTTTTHTTTTTHTTHTT    (5 times H, 15 times T)

– Which Pr(H) and Pr(T) are the most likely?

– Looks like Pr(H) = ¼ and Pr(T) = ¾  … let's prove this
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Probability recap   3/3

 Conditional probabilities
– Let A and B be events in a probability space Ω
– Denote by Pr(A | B) the probability of A ∩ B in the space B

(1) Pr(A | B) := Pr(A n B) / Pr (B)
(2) Pr(A | B) ∙ Pr(B) = Pr (B | A) ∙ Pr(A)

– The latter is called Bayes Theorem,
after Thomas Bayes, 1701 – 1760

– For an intuitive understanding, assume
that Ω is finite, and all x in Ω equiprobable:
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Naive Bayes   1/11

 Probabilistic assumption
– Underlying probability distributions:

A distribution pc over the classes … where Σc pc = 1

For each c, a distr. pwc over the words … where Σw pwc = 1

– Naïve Bayes assumes the following process for generating
a document D with m words W1…Wm and class label C

Pick C=c with prob. pc , then pick each word Wi=w with 
probability pwc , independent of the other words

This is clearly unrealistic (hence the name Naive Bayes):
e.g. when "relativity" is present, "theory" is more likely

– Anyway, this gives us something well-defined
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Naive Bayes 2/11

 Learning phase
– For a training set T of objects, let:

Tc = the set of documents from class c

nwc = #occurrences of word w in documents from Tc

nc = #occurrences of all words in documents from Tc

– We compute the pc and pwc using simple maximum 
likelihood estimation (MLE), as explained on Slide 10

pc ≔ |Tc| / |T|   global likeliness of a class

pwc ≔ nwc / nc likeliness of a word for a class

Beware: nwc and hence pwc are often zero … see slide 20
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Naive Bayes   3/11

 Learning phase, example
– Consider Example 2 (artificial documents)

aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B
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Naive Bayes   4/11

 Prediction
– For a given document d we want to compute

Pr(C=c | D=d) … for each class c    

The probability of class c, given document d

– Using Bayes Theorem, we have:

Pr(C=c | D=d) = Pr(D=d | C=c) ∙ Pr(C=c) / Pr(D=d)

– Using our (naïve) probabilistic assumptions, we have:

Pr(D=d | C=c) = Pr(W1=w1 ∩ … ∩ Wm=wm | C=c)

= Πi=1,...,m Pr(Wi=wi | C=c)
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Naive Bayes   5/11

 Prediction … continued

– We thus obtain that Pr(C=c | D=d)

= Πi=1,...,m Pr(Wi=wi | C=c) ∙ Pr(C=c) / Pr(D=d)

= Πi=1,...,m pwic 
∙ pc / Pr(D=d)

For the product in the front just take the pwc for all words
w in the document and multiply them (if a word w occurs 
multiple times, also take the factor pwc multiple times)

– Note that the Pr(D=d) is the same for all c

We can hence compute the class c with the largest
Pr(C=c | D=d) entirely from the learned pwc and pc
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Naive Bayes   6/11

 Prediction, example
– Consider Example 2 (artificial documents)

aba A
baabaaa A
bbaabbab B
abbaa A
abbb B
bbbaab B

– Let us predict the class for aab … A or B ?
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Naive Bayes   7/11

 Smoothing
– Problem: when only one pwc = 0, then Pr(C=c | D=d) = 0

This happens rather easily, namely when d contains a word 
that did not occur in the training set for class c

– Therefore, during training we actually compute

pwc ≔	(nwc + ɛ) / (nc + ɛ ∙ #vocabulary)

This is like adding every word ɛ times for every class

For ES10, take ɛ = 1/10 … for short docs, a larger ɛ would 
add too much noise
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Naive Bayes   8/11

 Smoothing … continued

– What about pc = 0 for a class c ?

This means, that |Tc| = 0, that is, there was no document 
from class c in the training set

– When pc = 0, then Pr(C=c | D=d) = 0 for any document d

But that is reasonable: if we did not see any document from 
a particular class c during training, we can learn nothing for 
that class, and we cannot meaningfully predict it

So no smoothing needed for that case
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Naive Bayes   9/11

 Numerical stability
– Problem: a product of many small probabilities quickly 

becomes zero due to limited precision on the computer

For example, the smallest positive number that can be 
represented with an 8-byte double is ≈ 10-308

Then multiplying 52 probabilities < 10-6 is already zero

– Therefore, compute the log-probabilities … then products
of probabilities translate into sums of log-probabilities

Log-probabilities also give you the most likely class,
because log is a monotone function

Beware: don't take exp in the end !
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Naive Bayes   10/11

 Some possible refinements
– Instead of words, we could take any other quantifiable 

aspect of a document as so-called "feature"

For example, also consider all (two-word) phrases 

– Omit non-predictive words like "and"

For example, omit the most frequent words

– In training, replace the word frequencies nwc by tf.idfwc

And correspondingly, replace nc by ∑w tf.idfwc

– For ES10, none of these are required … but feel free to 
play around with them 
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Naive Bayes   11/11

 Linear algebra (LA)
– Assume the documents are given as a term-document 

matrix, like we have seen it many times now

For ES10, we provide you with the code to construct
the document-term matrix with simple tf entries

– Then all the necessary computations can again be done 
very elegantly and efficiently using matrix operations

Whenever you have to compute a large number of 
(weighted) sums in a uniform manner, this calls for LA

However, if you feel more comfortable with (boring and 
inefficient) for-loops, you can use those for ES10 too
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