
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 9, Tuesday December 15th, 2015
(Clustering, K-Means)

Overview of this lecture

 Organizational

– Your experiences with ES8 Latent Semantic Indexing

– Quick LSI Demo "ALWIS"

– Christmas present No lecture next week

 Contents

– Clustering Definition and example

– K-Means Algorithm and analysis

– K-Means for text Implementation advice

Exercise Sheet 9: cluster movies dataset using k-means,
then report run-time and cluster quality on the Wiki

2

Christmas present 1/2

 There is no lecture next week (December 22)

– Reason 1: we have one more slot than usual this semester

– Reason 2: most of you will be away already anyway

– Reason 3: compensation for repeated overtime

– However: the deadline for ES9 is still December 22

It makes no sense to give you three weeks for the sheet,
it will only lead to procrastination until the very end

Also, that way you have two weeks of real vacation (at least
as far as this course is concerned)

– We meet again on January 12, 2016 for Lecture 10

3

Christmas present 2/2

 Cookies

– No real (HTTP) cookies, unfortunately

– Only chocolate chip cookies

– I hope you enjoy them anyways

– I have bought 1000000 of them

4

(in binary)

Experiences with ES8 1/3

 Summary / excerpts

– Many of you appreciated the "magic" but had trouble
understanding the algebra + how it all really works

I am afraid, one lecture is simply not enough for this
stuff, especially if your linear algebra is rusty

– Getting used to numpy / scipy cost some time

– Mistake on slide + in the master solution for ES2

– Problems with large running times or excessive memory use

For example, iterating over all entries of a large matrix
(dense or sparse) is very inefficient in numpy / scipy

– It seems that many of you are busy with Christmas already

5

Experiences with ES8 2/3

 Summary of results

– Results on benchmark improve only marginally, and only
with carefully chosen parameters

This could be considered overfitting

– Pure LSI gives terrible results → combination is must

– Many pairs are not "synonyms" in the strict sense:

about – who, known – as, she – her, composed – music,

new - york, same – name, jean – french, …

Bottom line: amazing application of linear algebra

But then again: the results aren't really that useful

6

Experiences with ES8 3/3

 ALWIS

– ALWIS is a software based on a master's thesis of two of
my students (back in Saarbrücken, a long time ago)

– ALWIS allows an interactive and intuitive exploration of the
matrices U and V of the matrix decomposition (A = U · S · V)

U = the underlying "concepts"

V = the documents expressed in terms of these "concepts"

– ALWIS implements LSI as well as its probabilistic sibling PLSI

PLSI gives more intuitive matrices, without negative entries

7

Clustering 1/3

 Informal definition

– Given elements x1, …, xn from a metric space

metric space = there is a measure of distance between
any two elements

– Group the elements into clusters C1, …, Ck such that

Intra-cluster distances are as small as possible

Inter-cluster distances are as large as possible

We will make this more precise on slide 10

– We assume that k is given as part of the input

8

Clustering 2/3

 Example

9

Clustering 3/3

 Centroids and RSS

– Assume we have a centroid μi for each cluster Ci

Intuitively: a single element from the metric space
"representing the cluster"

– Let ci be the index of the cluster to which xi is assigned

Each element belongs to exactly one cluster

– Then we define the residual sum of squares as

RSS = Σi=1,...,k Σx ϵ Ci (x – μi)
2 = Σi=1,...,n (xi – μci)

2

The sum of the squares of all intra-cluster distances

10

K-Means 1/9

 Algorithm

– Basic idea: find a local optimum of the RSS by greedily
minimizing it in every step

– Initialization: pick a set of centroids

For ES9, pick k random documents from the input set

– Then alternate between the following two steps

(A) Assign each element to its nearest centroid

(B) compute new centroids as average of elems assigned to it

– Let's first look at a demo and then show that both steps can
only decrease the RSS

http://www.onmyphd.com/?p=k-means.clustering

11

K-Means 2/9

 Step A (assign to nearest centroid)

– Recall: RSS = Σi=1,...,n (xi – μci)
2

– In Step A, the centroids μ1, …, μk are fixed and we want to
find those c1, …, cn that minimize the RSS:

minc1,…,cn Σi=1,...,n (xi – μci)2 = Σi=1,...,n minci (xi – μci)2

Each summand can be minimized independently

– minci (xi – μci)2 = minci |xi – μci|

The square distance is min. when the distance is min.

– |xi – μci| is minimized for ci = argminj |xi – μj|

In words: by assigning xi to its nearest centroid

12

K-Means 3/9

 Step B (recompute centroids)

– Recall: RSS = Σi=1,...,k Σx ϵ Ci (x – μi)
2

– In Step B, the clusters C1, …, Ck are fixed and we want
to find the centroids μ1, …, μk that minimize the RSS:

minμ1,…,μn Σi=1,...,k Σx ϵ Ci (x – μi)2 = Σi=1,...,k minμi Σx ϵ Ci (x – μi)2

The RSS part for each cluster can be minimized independently

– We can solve minμi Σx ϵ Ci (x – μi)
2 using simple calculus:

13

K-Means 4/9

 Convergence to local RSS minimum

– By what we have just proven, RSS stays equal or
decreases in every step (A) and every step (B)

– There are only finitely many clusterings

– Therefore, the algorithm will converge if we avoid that it
cycles forever between different clusterings with equal RSS

– Solution: deterministic tie breaking in the centroid
assignment, when two centroids are equally close

For ES9, simply prefer the centroid with smaller index

14

K-Means 5/9

 A local RSS minimum is not always a global one

15

K-Means 6/9

 Termination condition, options

– Stop when no more change in clustering

Optimal, but this can take a very long time

– Stop after a fixed number of iterations

Easy, but how to guess the right number?

– Stop when RSS falls below a given threshold

Reasonable, but RSS may never fall below that threshold

– Stop when decrease in RSS falls below a given threshold

Reasonable: we stop when we are close to convergence

For ES9, aim at a combination of small final RSS and
a fast running time … post results on the Wiki

16

K-Means 7/9

 Choice of a good k

– Idea 1: choose the k with smallest RSS

Bad idea, because RSS is minimized for k = n

– Idea 2: choose the k with smallest RSS + λ · k

Makes sense: RSS becomes smaller as k becomes larger

But now we have λ as a tuning parameter

Experience shows that for a given kind of application,
there is often an input-independent good choice for λ,
whereas a good k depends on the input

17

K-Means 8/9

 When is K-Means a good clustering algorithm

– K-Means tends to produce compact clusters of about
equal size

Indeed, it can be shown that K-Means is optimal when
the sought for clusters are spherical and of equal size

Whether it's good or not, k-means is used a lot lot lot
in practice, just because of it's simplicity

18

K-Means 9/9

 Alternatives

– K-Medoids

Maintain that centroids are elements from the input set

– Fuzzy k-means

Elements can belong to several clusters to varying
degrees ... this is sometimes called "soft clustering"

Note: LSI computed a kind of soft clustering

– EM-Algorithm (EM = Expectation-Maximization)

General-purpose optimization technique that can also be
used for soft clustering

19

K-Means for Text Documents 1/7

 Representation

– We use the vector space model (VSM), as in Lecture 8

Each document = one column of our term-doc matrix

– Centroids are also vectors in this space

– To computer the centroid of a set of documents, just
take the average of the document vectors

– Important observation: the document vectors are
sparse, the centroids become dense over time

For ES9, it is critical that you store the document vectors
in sparse representation, for the same reasons as in ES8

20

K-Means for Text Documents 2/7

 Construct from an inverted index

– The term-document matrix can be constructed from an
inverted index just as shown in the last lecture

For ES9, you can re-use your code from ES8, or from
the master solutions if you prefer

And don't be afraid, you don't need the LSI stuff for
this sheet, only the term-document matrix

So even if you had trouble with ES8, please let that not
deter you from enjoying ES9

21

K-Means for Text Documents 3/7

 Running time

– Let n = #documents, m = #terms, k = #clusters

– Assume that each dist computation takes time ϴ(D)

– Then each step (A) takes time ϴ(k · n · D)

Compute dist between each documents and each cluster

– Each step (B) takes time ϴ(n · m)

Each of the n documents is added to one centroid vector,
and one vector addition takes time ϴ(m)

22

K-Means for Text Documents 4/7

 Distance between two documents

– We use Euclidean distance: dist(x, y) := |x – y|

Computing this between a sparse and a dense vector
takes time Θ(m), where m is the total number of terms

– Lemma: |x – y|2 = |x|2 + |y|2 – 2 · x ● y, where x ● y
is the dot product of x and y

Hence: when |x| = |y| = 1, then ½ · |x – y|2 = 1 – x ● y

Computing the dot product between a sparse and a dense
vector takes time Θ(M), where M is the number of non-
zero entries in the sparse vector

For ES9, this is critical for the running time, see slide 22

23

K-Means for Text Documents 5/7

 Using matrix operations

– Both Steps (A) and (B) can be implemented very efficiently
using matrix operations

Some hints and examples on the next two slides

– Use the lemma from the previous slides and make sure
that document vectors and centroids are normalized

For ES9, we provide explicit code for the normalization

Quite tricky to implement efficiently in numpy / scipy

Explicitly iterating over all entries in a large matrix is very
inefficient (and hence takes forever) in numpy / scipy

24

K-Means for Text Documents 6/7

 Using matrix operations, Step (A)

– For Step (A), we need to compute the dot products between
all documents and all centroids

– Let A be the term-document matrix (one doc per column)

– Let C be the term-centroid matrix (one centroid per column)

– Then CT · A yields a matrix, where the entry at i, j is exactly
the dot product between centroid i and document j

25

K-Means for Text Documents 7/7

 Using matrix operations, Step (B)

– For Step (B), we need to add the vectors of all documents
in the same cluster C, and then divide by |C|

– Let A be the term-document matrix (one doc per column)

– Let B be a 0-1 matrix where the entry at i, j is 1 iff
document i is in cluster j … then L1-normalize the columns

– Then A · B yields a matrix, where the j-th column is exactly
the average of all documents assigned to cluster j

26

References

 Further reading

– Textbook Chapter 16: Flat clustering

http://nlp.stanford.edu/IR-book/pdf/16flat.pdf

 Wikipedia

– http://en.wikipedia.org/wiki/Cluster_analysis

– http://en.wikipedia.org/wiki/K-means

– http://en.wikipedia.org/wiki/K-medoids

– http://en.wikipedia.org/wiki/EM_Algorithm

27

