
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 8, Wednesday December 8th, 2015
(Vector Space Model, Latent Semantic Indexing)

Overview of this lecture

 Organizational
– Your experiences with ES7 cookies, UTF-8

 Contents
– Synonyms motivation + examples

– Vector Space Model (VSM) documents as vectors

– Latent Semantic Indexing (LSI) find synonyms automagically

– Using LSI for retrieval three variants + another

– Exercise Sheet 8: re-implement your code from ES2 using
the VSM, and re-evaluate benchmark from ES2 using LSI

Experiences with ES7

 Summary / excerpts
– "This exercise sheet was annoying"

Sorry … but a perfect summary of the typical developer
experience with encoding issues, in particular UTF-8

– "Very useful … I will not struggle anymore with encodings"

Thanks, that was exactly the intention of the lecture !

– Quite some bit fiddling needed

Some were not up to the low-level details and defaulted
to the built-in functions

3

Synonyms 1/4

 Motivation
– We have already seen fuzzy (prefix) search

Search uniwercity find university

– Today we want to find synonyms = others word
meaning the same thing as a given word

Search university find college

Search bringdienst find lieferservice

Search cookie find biscuit

Note: typically no lexical similarity whatsoever, the
similarity is only in the meaning

4

Synonyms 2/4

 Solution 1: Maintain a thesaurus
– For each word, manually compile a list of synonyms

university: uni, academy, college, ...

bringdienst: lieferservice, heimservice, pizzaservice, ...

cookie: biscuit, confection, wafer, ...

– Problem 1: laborious, and still notoriously out of date

– Problem 2: it depends on the context, which synonyms
are appropriate … for example:

university award ≠ academy award

http cookie ≠ http biscuit

5

Synonyms 3/4

 Solution 2: Track user behavior
– Investigate whole search sessions

Track sessions with, guess what: COOKIES

– For example, many users searching for either of

pizza freiburg

bringdienst freiburg

then click on

Lieferservice Freiburg im Breisgau

This provides a hint that pizza and bringdienst and
lieferservice are related

6

Synonyms 4/4

 Solution 3: Automatic methods
– The text itself also tells us which words are related

– For example, consider (German) delivery webpages

some mention Bringdienst, others say Lieferservice

but apart from that they use the same words a lot, like:
pizza, mozzarella, käse, nudeln, vegetarisch, …

Can we find out (automatically) that two words are
related, based on the similar context they appear in ?

This is the topic of today's lecture !

7

Vector Space Model 1/8

 Motivation
– For this lecture, it will be useful to represent documents

as vectors … here is our running example for today:

– Each row corresponds to a word, each column to a document

– Non-zero entries: score for that word in that document

In the lecture, we use tf scores … for ES8, use BM25 scores
8

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Vector Space Model 2/8

 Terminology
– Often referred to as the Vector Space Model (VSM)

– In the VSM, words are traditionally referred to as terms

– Putting the vectors from all documents from a given corpus
side by side gives us the so-called term-document matrix

9

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Vector Space Model 3/8

 Retrieval
– A query can also be represented as a vector … we take

1 for a term used in the query, and 0 for all other terms

– We measure the relevance of a document to the query
by taking the dot product of the two vectors

Note: this is exactly the same score as in Lecture 2

10

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Vector Space Model 4/8

 Algebra
– More formally, let us write A for the term-document

matrix and q for the query vector

– Then the matrix-vector product qT ∙ A gives us a vector
with the relevance scores of all the documents

Let us implement this together now

11

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Vector Space Model 5/8

 Basic linear algebra in Python
– For standard linear algebra, we can use numpy

sudo apt-get install python3-numpy

import numpy
A = numpy.array([[1, 1, 0, 1, 0, 0], …])
q = numpy.array([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

Use numpy.array and dot for multiplication, not *

q is a row vector above = qT from the previous slide

See the code from the lecture for more example usage

12

Vector Space Model 6/8

 Sparse matrices
– Most entries in a term-document matrix are zero

Storing all entries explicitly infeasible for large matrices

– Sparse-matrix representation: store only the non-zero
entries (together with their row and column index)

(1, 0, 0), (1, 0, 1), (1, 0, 3), …, (2, 2, 3), …

13

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Vector Space Model 7/8

 Sparse matrices
– Two principle ways to store the list of non-zero values

row-major: store row by row (sort by row index first)

column-major: store col by col (sort by col index first)

– Note: the sparse row-major representation of a term-
document matrix is equivalent to an inverted index

(1, 0, 0), (1, 0, 1), (1, 0, 3) inverted list for term 0
(1, 1, 0), (1, 1, 2), (1, 1, 3) inverted list for term 1
(1, 2, 0), (1, 2, 1), (1, 2, 1), … inverted list for term 2
(1, 3, 3), (1, 3, 4), (1, 3, 5) inverted list for term 3

(non-zero score, row index = term id, col index = doc id)

14

Vector Space Model 8/8

 Sparse matrices in Python
– Not included in numpy, we have to use scipy

sudo apt-get install python3-scipy

import scipy.sparse
nz_vals = [1, 1, 1, 1, 1, 1, …]
row_inds = [0, 0, 0, 1, 1, 1, …]
col_inds = [0, 1, 3, 0, 2, 3, …]
A = scipy.sparse.csr_matrix((nz_vals, (row_inds, col_inds)))
q = scipy.sparse.csr_matrix([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

See the code from the lecture for more example usage

15

Latent Semantic Indexing 1/9

 Motivation
– Let's look at our example again:

D1 and D2 and D3 are "about" surfing the web

D5 and D6 are "about" surfing on the beach

internet and web are synonyms, surfing is a polysem
= means different things in different context

16

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Latent Semantic Indexing 2/9

 Motivation
– Let's look at the query web surfing again, using dot-

product similarity as explained on slide 10

– Then sim(D3, Q) > sim(D2, Q) = sim(D5, Q)

But D2 seems just as relevant for the query as D3, only
that the word "internet" is used instead of "web"

17

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Latent Semantic Indexing 3/9

 Conceptual solution

Add the missing synonyms to the documents

Then indeed: sim(D1, Q) = sim(D2, Q) = sim(D3, Q)

The goal of LSI is to do something like this automatically

18

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0

Latent Semantic Indexing 4/9

 A simple but powerful observation

The modified matrix has column rank 2

That is, we can write each column as a (different) linear
combination of the same two base columns (B1 and B2)

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank

19

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

Latent Semantic Indexing 5/9

 Matrix factorization

Equivalently: the 4 x 6 term-document matrix can be
written as a product of a 4 x 2 matrix with a 2 x 6 matrix

The base vectors B1 and B2 are the underlying "concepts"

The vectors D'1, …, D'6 are the representation of the
documents in the (lower-dimensional) "concept space"

20

D1 D2 D3 D4 D5 D6

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 2 1 1
0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

D'1 D'2 D'3 D'4 D'5 D'6

1 1 1 1 0 0
0 0 0 1 1 1

= ●

Latent Semantic Indexing 6/9

 The goal of LSI
– Given an m x n term-document matrix A and k < rank(A)

– Then find a matrix A' of (column) rank k such that the
difference between A' and A is as small as possible

Formally: A' = argminA' m x n with rank k ‖A – A' ‖

For the ‖… ‖ we take the so-called Frobenius-norm

This is defined as ‖D ‖ := sqrt(∑ij Dij
2)

The reason for using this norm is purely technical: that
way, the math on the next slides works out nicely

21

Latent Semantic Indexing 7/9

 How to find / compute such an A'
– We first compute the so-called singular value

decomposition (SVD) of the given matrix A :

Theorem: for any m x n matrix A of rank r, there
exist U, S, V such that A = U ∙ S ∙ V , and where

U is an m x r matrix with U ∙ UT = Im the m x m identity matrix

S is a r x r matrix with entries only on its diagonal

V is an r x n matrix with VT ∙ V = In the n x n identify matrix

The decomposition is unique up to simultaneous
permutation of the rows/columns of U, S, and V
Standard form: diagonal entries of S positive and sorted

22

Latent Semantic Indexing 8/9

 Using the SVD our task becomes easy
– Let A = U ∙ S ∙ V be the SVD of A

– For a given k < rank(A) let

Uk = the first k columns of U now an m x k matrix

Sk = the upper k x k part of S now a k x k matrix

Vk = the first k rows of V now a k x n matrix

Note: then still Uk ∙ Uk
T = Im and Vk ∙ Vk

T = In
Let Ak = Uk ∙ Sk ∙ Vk

T

Then Ak is a matrix of rank k that minimizes ‖A – Ak ‖

23

Latent Semantic Indexing 9/9

 How to compute the SVD
– Easy to compute from the Eigenvector decomposition

Namely of the quadratic matrices A ∙ AT and AT ∙ A

– In practice, the more direct Lanczos method is used

This has complexity O(k ∙ nnz), where k is the rank and
nnz is the number of non-zero values in the matrix

Note that for term-document matrices nnz << n ∙ m

For ES8, just use svds from scipy.sparse.linalg

See the code from the lecture for a usage example

24

Using LSI for better Retrieval 1/8

 Variant 1: work with Ak instead of A

25

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.9 0.6 0.6 1.0 0.0 0.0
0.9 0.6 0.6 1.0 0.0 0.0
1.1 0.9 0.9 2.1 1.0 1.0

-0.1 0.1 0.1 0.9 1.0 1.0

Our example A from the beginning best rank-2 approximation A2

Using LSI for better Retrieval 2/8

 Variant 1: work with Ak instead of A
– Problem: Ak is a dense matrix, that is, most / all of it's

m ∙ n entries will be non-zero

Typically, both m and n will be very large, and then
already storing this matrix is infeasible

E.g. if m = 1000 and n = 10M  m ∙ n = 10 G

26

Using LSI for better Retrieval 3/8

 Variant 2: work with Vk instead of with A
– Recall: Vk gives the representation of the documents in

the k-dimensional concept space

27

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.4 0.3 0.3 0.7 0.3 0.3
0.5 0.2 0.2 0.0 -0.6 -0.6

Our example A from the beginning V2 from the SVD of A

Using LSI for better Retrieval 4/8

 Variant 2: work with Vk instead of with A
– Observation: Vk is a dense matrix, that is, most or all of

its k ∙ n entries are non-zero

Note: the original matrix A has m' ∙ n non-zero entries,
where m' is the average number of words in a document

So storing Vk instead of A is ok if k ≈ m' or smaller

Note: no need for a sparse representation / an inverted
index when storing / using Vk

This is the variant you should use for ES8.3

28

Using LSI for better Retrieval 5/8

 Variant 2: work with Vk instead of with A
– Problem 2: we need to map the query to concept space

The dot-product similarity of query q with all documents is

qT ∙ Ak = qT ∙ (Uk ∙ Sk ∙ Vk) = (qT ∙ Uk ∙ Sk) ∙ Vk

Then qk
T := qT ∙ Uk ∙ Sk is query mapped to concept space

– The dot product qk
T ∙ Vk requires time ~ n ∙ k … since both

qk and Vk are dense

In comparison: computing the similarities of q with the
original documents requires time O(n ∙ #q) and less

where #q = number of query words in q

29

Using LSI for better Retrieval 6/8

 Variant 3: expand the original documents
– In Variant 2, we have transformed both the query and

the documents to concept space

– LSI can also be viewed as doing document expansion
in the original space + no change in the query

Namely, let Tk = Uk ∙ Uk
T this is an m x m matrix

Then one can easily prove that Ak = Tk ∙ A

For ES8, simply compute Tk from Uk as shown, then
compute the 50 term pairs with the largest entries in Tk

30

Using LSI for better Retrieval 7/8

 Variant 3: expand the original documents
– Here is some intuition for Tk, assuming 0 or 1 entries

In practice, we can get 0-1 entries by setting all entries
in T above a certain threshold to 1, and all others to 0

31

Di
1
0
1
0

internet 1 1 0 0
web 1 1 0 0
surfing 0 0 1 0
beach 0 0 0 1

in
te

rn
et

w
eb

su
rfi

ng
be

ac
h

● =

D'i
1
1
1
0

Using LSI for better Retrieval 8/8

 Linear combination with original scores
– Experience: LSI adds some useful information to the term-

document matrix, but also a lot of noise

– In practice, one therefore uses a linear combination of the
original scores and the LSI scores

Variant 1: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Ak

Variant 2: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qk
T ∙ Vk

Variant 3: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Tk ∙ A

For ES9, take Variant 2 and experiment with a good λ

32

References

 Further reading
– Textbook Chapter 18: Matrix decompositions & LSI

http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

– Deerwester, Dumais, Landauer, Furnas, Harshman

Indexing by Latent Semantic Analysis, JASIS 41(6), 1990

 Web resources
– http://en.wikipedia.org/wiki/Latent_semantic_indexing

– http://en.wikipedia.org/wiki/Singular_value_decomposition

– http://www.numpy.org/

– http://www.scipy.org/

33

