Information Retrieval WS 2015 / 2016

Lecture 8, Wednesday December 8th, 2015
(Vector Space Model, Latent Semantic Indexing)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

- Organizational
- Your experiences with ES7 cookies, UTF-8
- Contents
- Synonyms
- Vector Space Model (VSM) documents as vectors
- Latent Semantic Indexing (LSI) find synonyms automagically
- Using LSI for retrieval
motivation + examples
three variants + another
- Exercise Sheet 8: re-implement your code from ES2 using the VSM, and re-evaluate benchmark from ES2 using LSI

Experiences with ES7

■ Summary / excerpts

- "This exercise sheet was annoying"

Sorry ... but a perfect summary of the typical developer experience with encoding issues, in particular UTF-8

- "Very useful ... I will not struggle anymore with encodings"

Thanks, that was exactly the intention of the lecture!

- Quite some bit fiddling needed

Some were not up to the low-level details and defaulted to the built-in functions

Synonyms 1/4

■ Motivation

- We have already seen fuzzy (prefix) search

Search uniwercity find university

- Today we want to find synonyms = others word meaning the same thing as a given word

Search university find college
Search bringdienst find lieferservice
Search cookie find biscuit
Note: typically no lexical similarity whatsoever, the similarity is only in the meaning

Synonyms 2/4

■ Solution 1: Maintain a thesaurus

- For each word, manually compile a list of synonyms university: uni, academy, college, ... bringdienst: lieferservice, heimservice, pizzaservice, ... cookie: biscuit, confection, wafer, ...
- Problem 1: laborious, and still notoriously out of date
- Problem 2: it depends on the context, which synonyms are appropriate ... for example:
university award \neq academy award
http cookie $=$ http biscuit

Synonyms 3/4

■ Solution 2: Track user behavior

- Investigate whole search sessions

Track sessions with, guess what: COOKIES

- For example, many users searching for either of
pizza freiburg
bringdienst freiburg
then click on
Lieferservice Freiburg im Breisgau
This provides a hint that pizza and bringdienst and lieferservice are related

Synonyms 4/4

- Solution 3: Automatic methods
- The text itself also tells us which words are related
- For example, consider (German) delivery webpages
some mention Bringdienst, others say Lieferservice but apart from that they use the same words a lot, like: pizza, mozzarella, käse, nudeln, vegetarisch, ...

Can we find out (automatically) that two words are related, based on the similar context they appear in ?

This is the topic of today's lecture !

Vector Space Model 1/8

■ Motivation

- For this lecture, it will be useful to represent documents as vectors ... here is our running example for today:

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

- Each row corresponds to a word, each column to a document
- Non-zero entries: score for that word in that document In the lecture, we use tf scores ... for ES8, use BM25 scores

Vector Space Model 2/8

■ Terminology

- Often referred to as the Vector Space Model (VSM)
- In the VSM, words are traditionally referred to as terms
- Putting the vectors from all documents from a given corpus side by side gives us the so-called term-document matrix

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

Vector Space Model 3/8

- Retrieval
- A query can also be represented as a vector ... we take 1 for a term used in the query, and 0 for all other terms
- We measure the relevance of a document to the query by taking the dot product of the two vectors

Note: this is exactly the same score as in Lecture 2

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$	\mathbf{Q}
internet	1	1	0	1	0	0	0
web	1	0	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0
	2	1	2	3	1	$\mathbf{1}$	

Vector Space Model

- Algebra

- More formally, let us write A for the term-document matrix and q for the query vector
- Then the matrix-vector product q^{\top}. A gives us a vector with the relevance scores of all the documents

Let us implement this together now

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	Q
internet	1	1	0	1	0	0	0
web	1	0	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0

Vector Space Model 5/8

- Basic linear algebra in Python
- For standard linear algebra, we can use numpy
sudo apt-get install python3-numpy
import numpy
$A=$ numpy. $\operatorname{array}([[1,1,0,1,0,0], \ldots])$
$\mathrm{q}=$ numpy.array $([0,1,1,0])$
scores $=q \cdot \operatorname{dot}(A)$
print(scores)
Use numpy.array and dot for multiplication, not *
q is a row vector above $=q^{\top}$ from the previous slide
See the code from the lecture for more example usage

Vector Space Model 6/8

- Sparse matrices
- Most entries in a term-document matrix are zero

Storing all entries explicitly infeasible for large matrices

- Sparse-matrix representation: store only the non-zero entries (together with their row and column index)

$(1,0,0),(1,0,1),(1,0,3), \ldots,(2,2,3), \ldots$						
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	$\underline{2}$	1	1
beach	0	0	0	1	1	1

Vector Space Model 7/8

- Sparse matrices

- Two principle ways to store the list of non-zero values
row-major: store row by row (sort by row index first)
column-major: store col by col (sort by col index first)
- Note: the sparse row-major representation of a termdocument matrix is equivalent to an inverted index

$(1,0,0),(1,0,1),(1,0,3)$	inverted list for term 0
$(1,1,0),(1,1,2),(1,1,3)$	inverted list for term 1
$(1,2,0),(1,2,1),(1,2,1), \ldots$	inverted list for term 2
$(1,3,3),(1,3,4),(1,3,5)$	inverted list for term 3
(non-zero score, row index = term id, col index = doc id)	

Vector Space Model 8/8

- Sparse matrices in Python
- Not included in numpy, we have to use scipy
sudo apt-get install python3-scipy
import scipy.sparse
nz_vals $=[1,1,1,1,1,1, \ldots]$ row_inds $=[0,0,0,1,1,1, \ldots]$ col_inds $=[0,1,3,0,2,3, \ldots]$ A = scipy.sparse.csr_matrix((nz_vals, (row_inds, col_inds)))
$\mathrm{q}=$ scipy.sparse.csr_matrix([0, 1, 1, 0])
scores $=$ q.dot(A) print(scores)

See the code from the lecture for more example usage

Latent Semantic Indexing 1/9

■ Motivation

- Let's look at our example again:
D_{1} and D_{2} and D_{3} are "about" surfing the web
D_{5} and D_{6} are "about" surfing on the beach
internet and web are synonyms, surfing is a polysem
$=$ means different things in different context

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

Latent Semantic Indexing 2/9

- Motivation
- Let's look at the query web surfing again, using dotproduct similarity as explained on slide 10
- Then $\operatorname{sim}\left(D_{3}, Q\right)>\operatorname{sim}\left(D_{2}, Q\right)=\operatorname{sim}\left(D_{5}, Q\right)$

But D_{2} seems just as relevant for the query as D_{3}, only that the word "internet" is used instead of "web"

	REL REL		REL REL		\times	\times	
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	Q
internet	1	1	0	1	0	0	0
web	1	0	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0
	2	1	2	3	1	1	

Latent Semantic Indexing 3/9

■ Conceptual solution

	REL	REL	REL	REL	\times	\times	
	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$	\mathbf{Q}
internet	1	1	$\mathbf{1}$	1	0	0	0
web	1	$\mathbf{1}$	1	1	0	0	1
surfing	1	1	1	2	1	1	1
beach	0	0	0	1	1	1	0
	2	2	2	3	1	1	

Add the missing synonyms to the documents
Then indeed: $\operatorname{sim}\left(D_{1}, Q\right)=\operatorname{sim}\left(D_{2}, Q\right)=\operatorname{sim}\left(D_{3}, Q\right)$
The goal of LSI is to do something like this automatically

Latent Semantic Indexing 4/9

- A simple but powerful observation

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	B_{1}	B_{2}
internet	1	1	1	1	0	0	1	0
web	1	1	1	1	0	0	1	0
surfing	1	1	1	2	1	1	1	1
beach	0	0	0	1	1	1	0	1

The modified matrix has column rank 2
That is, we can write each column as a (different) linear combination of the same two base columns (B_{1} and B_{2})

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank

Latent Semantic Indexing 5/9

- Matrix factorization

Equivalently: the 4×6 term-document matrix can be written as a product of a 4×2 matrix with a 2×6 matrix

The base vectors B_{1} and B_{2} are the underlying "concepts"
The vectors $\mathrm{D}_{1}^{\prime}, \ldots, \mathrm{D}_{6}$ are the representation of the documents in the (lower-dimensional) "concept space"

Latent Semantic Indexing 6/9

■ The goal of LSI

- Given an $m \times n$ term-document matrix A and $k<\operatorname{rank}(A)$
- Then find a matrix A^{\prime} of (column) rank k such that the difference between A^{\prime} and A is as small as possible

Formally: $\quad A^{\prime}=\operatorname{argmin}_{A^{\prime}} m \times n$ with rank k $\left\|A-A^{\prime}\right\|$
For the ||... || we take the so-called Frobenius-norm This is defined as $\|D\|:=\operatorname{sqrt}\left(\Sigma_{i j} D_{i j}^{2}\right)$
The reason for using this norm is purely technical: that way, the math on the next slides works out nicely

Latent Semantic Indexing 7/9

■ How to find / compute such an A'
\rightarrow ח

- We first compute the so-called singular value decomposition (SVD) of the given matrix A :

Theorem: for any $m \times n$ matrix A of rank r, there exist $\mathbf{U}, \mathrm{S}, \mathrm{V}$ such that $\mathbf{A}=\mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}$, and where
U is an $m \times r$ matrix with $U \cdot U^{\top}=I_{m}$ the $m \times m$ identity matrix S is a rxr matrix with entries only on its diagonal

V is an $\mathrm{r} \times \mathrm{n}$ matrix with $\mathrm{V}^{\top} \cdot \mathrm{V}=\mathrm{I}_{\mathrm{n}} \quad$ the $\mathrm{n} \times \mathrm{n}$ identify matrix
The decomposition is unique up to simultaneous permutation of the rows/columns of U, S, and V

Standard form: diagonal entries of S positive and sorted

Latent Semantic Indexing 8/9

■ Using the SVD our task becomes easy

- Let $A=U \cdot S \cdot V$ be the SVD of A
- For a given k < rank(A) let
$U_{k}=$ the first k columns of $U \quad$ now an $m \times k$ matrix
$S_{k}=$ the upper $k \times k$ part of S now a $k \times k$ matrix
$\mathrm{V}_{\mathrm{k}}=$ the first k rows of V now a $\mathrm{k} \times \mathrm{n}$ matrix
Note: then still $\mathrm{U}_{\mathrm{k}} \cdot \mathrm{U}_{\mathrm{k}}^{\top}=\mathrm{I}_{\mathrm{m}}$ and $\mathrm{V}_{\mathrm{k}} \cdot \mathrm{V}_{\mathrm{k}}^{\top}=\mathrm{I}_{\mathrm{n}}$
Let $\mathbf{A}_{\mathbf{k}}=\mathbf{U}_{\mathbf{k}} \cdot \mathbf{S}_{\mathbf{k}} \cdot \mathbf{V}_{\mathbf{k}}{ }^{\mathbf{\top}}$
Then A_{k} is a matrix of rank k that minimizes $\left\|A-A_{k}\right\|$

Latent Semantic Indexing

■ How to compute the SVD

- Easy to compute from the Eigenvector decomposition

Namely of the quadratic matrices $A \cdot A^{T}$ and $A^{\tilde{T}} \cdot A$

- In practice, the more direct Lanczos method is used

This has complexity $O(k \cdot n n z)$, where k is the rank and $n n z$ is the number of non-zero values in the matrix

Note that for term-document matrices $n n z \ll n \cdot m$
For ES8, just use svds from scipy.sparse.linalg
See the code from the lecture for a usage example

Using LSI for better Retrieval $1 / 8$

■ Variant 1: work with $\mathbf{A}_{\mathbf{k}}$ instead of A

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

Our example A from the beginning

\mathbf{D}_{1}	$\mathbf{D}_{2} \mathbf{2}^{\prime}$	\mathbf{D}_{3}	\mathbf{D}_{4}^{\prime}	$\mathbf{D}_{\mathbf{5}}$	\mathbf{D}_{6}
0.9	0.6	0.6	1.0	0.0	0.0
0.9	0.6	0.6	1.0	0.0	0.0
1.1	0.9	0.9	2.1	1.0	1.0
-0.1	0.1	0.1	0.9	1.0	1.0

best rank-2 approximation A_{2}

Using LSI for better Retrieval 2/8

■ Variant 1: work with $\mathbf{A}_{\mathbf{k}}$ instead of A

- Problem: A_{k} is a dense matrix, that is, most / all of it's $\mathrm{m} \cdot \mathrm{n}$ entries will be non-zero

Typically, both m and n will be very large, and then already storing this matrix is infeasible
E.g. if $m=1000$ and $n=10 M \rightarrow m \cdot n=10 \mathbf{G}$

Using LSI for better Retrieval 3/8

- Variant 2: work with $\mathbf{V}_{\mathbf{k}}$ instead of with A
- Recall: V_{k} gives the representation of the documents in the k-dimensional concept space

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{6}}$
internet	1	1	0	1	0	0
web	1	0	1	1	0	0
surfing	1	1	1	2	1	1
beach	0	0	0	1	1	1

\mathbf{D}_{1}	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	\mathbf{D}_{4}	\mathbf{D}_{5}^{\prime}	\mathbf{D}_{6}
0.4	0.3	0.3	0.7	0.3	0.3
0.5	0.2	0.2	0.0	-0.6	-0.6

Our example A from the beginning
V_{2} from the SVD of A

Using LSI for better Retrieval 4/8

- Variant 2: work with $\mathbf{V}_{\mathbf{k}}$ instead of with A
- Observation: V_{k} is a dense matrix, that is, most or all of its $\mathrm{k} \cdot \mathrm{n}$ entries are non-zero

Note: the original matrix A has $\mathrm{m} \cdot \mathrm{n}$ non-zero entries, where m ' is the average number of words in a document

So storing V_{k} instead of A is ok if $\mathrm{k} \approx \mathrm{m}^{\prime}$ or smaller
Note: no need for a sparse representation / an inverted index when storing / using V_{k}

This is the variant you should use for ES8.3

Using LSI for better Retrieval 5/8

■ Variant 2: work with $\mathbf{V}_{\mathbf{k}}$ instead of with A

- Problem 2: we need to map the query to concept space The dot-product similarity of query q with all documents is $q^{\top} \cdot A_{k}=q^{\top} \cdot\left(U_{k} \cdot S_{k} \cdot V_{k}\right)=\left(q^{\top} \cdot U_{k} \cdot S_{k}\right) \cdot V_{k}$ Then $\mathrm{q}_{\mathrm{k}}^{\top}:=\mathrm{q}^{\top} \cdot \mathrm{U}_{\mathrm{k}} \cdot \mathrm{S}_{\mathrm{k}}$ is query mapped to concept space
- The dot product $\mathrm{q}_{\mathrm{k}}{ }^{\top} \cdot \mathrm{V}_{\mathrm{k}}$ requires time $\sim \mathrm{n} \cdot \mathrm{k} \ldots$ since both q_{k} and V_{k} are dense

In comparison: computing the similarities of q with the original documents requires time $\mathrm{O}(\mathrm{n} \cdot \# \mathrm{q})$ and less where $\# q=$ number of query words in q

Using LSI for better Retrieval 6/8

■ Variant 3: expand the original documents

- In Variant 2, we have transformed both the query and the documents to concept space
- LSI can also be viewed as doing document expansion in the original space + no change in the query

Namely, let $T_{k}=U_{k} \cdot U_{k}^{\top} \quad$ this is an $m \times m$ matrix

For ES8, simply compute T_{k} from U_{k} as shown, then compute the 50 term pairs with the largest entries in T_{k}

Using LSI for better Retrieval 7/8

- Variant 3: expand the original documents
- Here is some intuition for T_{k}, assuming 0 or 1 entries

In practice, we can get 0-1 entries by setting all entries

Using LSI for better Retrieval 8/8

■ Linear combination with original scores

- Experience: LSI adds some useful information to the termdocument matrix, but also a lot of noise
- In practice, one therefore uses a linear combination of the original scores and the LSI scores
Variant 1:
scores $=\lambda \cdot q^{\top} \cdot A+(1-\lambda) \cdot q^{\top} \cdot A_{k}$
Variant 2: \quad scores $=\lambda \cdot q^{\top} \cdot A+(1-\lambda) \cdot q_{k}^{\top} \cdot V_{k}$
Variant 3: \quad scores $=\lambda \cdot q^{\top} \cdot A+(1-\lambda) \cdot q^{\top} \cdot T_{k} \cdot A$

For ES9, take Variant 2 and experiment with a good λ

References

- Further reading
- Textbook Chapter 18: Matrix decompositions \& LSI
http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf
- Deerwester, Dumais, Landauer, Furnas, Harshman

Indexing by Latent Semantic Analysis, JASIS 41(6), 1990

- Web resources
- http://en.wikipedia.org/wiki/Latent semantic indexing
- http://en.wikipedia.org/wiki/Singular value decomposition
- http://www.numpy.org/
- http://www.scipy.org/

