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Overview of this lecture

 Organizational
– Your experiences with ES7 cookies, UTF-8

 Contents
– Synonyms motivation + examples

– Vector Space Model (VSM) documents as vectors

– Latent Semantic Indexing (LSI) find synonyms automagically

– Using LSI for retrieval three variants + another

– Exercise Sheet 8: re-implement your code from ES2 using
the VSM, and re-evaluate benchmark from ES2 using LSI



Experiences with ES7

 Summary / excerpts
– "This exercise sheet was annoying"

Sorry … but a perfect summary of the typical developer 
experience with encoding issues, in particular UTF-8

– "Very useful … I will not struggle anymore with encodings"

Thanks, that was exactly the intention of the lecture !

– Quite some bit fiddling needed

Some were not up to the low-level details and defaulted
to the built-in functions
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Synonyms   1/4

 Motivation
– We have already seen fuzzy (prefix) search

Search uniwercity find university

– Today we want to find synonyms = others word 
meaning the same thing as a given word

Search university find college

Search bringdienst find lieferservice

Search cookie find biscuit

Note: typically no lexical similarity whatsoever, the 
similarity is only in the meaning
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Synonyms   2/4

 Solution 1:  Maintain a thesaurus
– For each word, manually compile a list of synonyms

university: uni, academy, college, ...

bringdienst: lieferservice, heimservice, pizzaservice, ...

cookie: biscuit, confection, wafer, ...

– Problem 1: laborious, and still notoriously out of date

– Problem 2: it depends on the context, which synonyms
are appropriate … for example:

university award ≠ academy award

http cookie ≠ http biscuit
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Synonyms   3/4

 Solution 2:  Track user behavior
– Investigate whole search sessions

Track sessions with, guess what: COOKIES

– For example, many users searching for either of

pizza freiburg

bringdienst freiburg

then click on

Lieferservice Freiburg im Breisgau

This provides a hint that pizza and bringdienst and 
lieferservice are related
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Synonyms   4/4

 Solution 3:  Automatic methods
– The text itself also tells us which words are related

– For example, consider (German) delivery webpages

some mention Bringdienst, others say Lieferservice

but apart from that they use the same words a lot, like: 
pizza, mozzarella, käse, nudeln, vegetarisch, …

Can we find out (automatically) that two words are 
related, based on the similar context they appear in ?

This is the topic of today's lecture !
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Vector Space Model   1/8

 Motivation
– For this lecture, it will be useful to represent documents

as vectors … here is our running example for today:

– Each row corresponds to a word, each column to a document

– Non-zero entries: score for that word in that document

In the lecture, we use tf scores … for ES8, use BM25 scores
8

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1



Vector Space Model   2/8

 Terminology
– Often referred to as the Vector Space Model (VSM)

– In the VSM, words are traditionally referred to as terms

– Putting the vectors from all documents from a given corpus 
side by side gives us the so-called term-document matrix
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1



Vector Space Model   3/8

 Retrieval
– A query can also be represented as a vector … we take  

1 for a term used in the query, and 0 for all other terms

– We measure the relevance of a document to the query 
by taking the dot product of the two vectors

Note: this is exactly the same score as in Lecture 2
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Vector Space Model   4/8

 Algebra
– More formally, let us write A for the term-document 

matrix and q for the query vector

– Then the matrix-vector product qT ∙ A gives us a vector 
with the relevance scores of all the documents

Let us implement this together now
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Vector Space Model   5/8

 Basic linear algebra in Python
– For standard linear algebra, we can use numpy

sudo apt-get install python3-numpy

import numpy
A = numpy.array([[1, 1, 0, 1, 0, 0], …])
q = numpy.array([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

Use numpy.array and dot for multiplication, not *

q is a row vector above = qT from the previous slide

See the code from the lecture for more example usage
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Vector Space Model   6/8

 Sparse matrices
– Most entries in a term-document matrix are zero

Storing all entries explicitly infeasible for large matrices

– Sparse-matrix representation: store only the non-zero 
entries (together with their row and column index)

(1, 0, 0), (1, 0, 1), (1, 0, 3), …, (2, 2, 3), …
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1



Vector Space Model   7/8

 Sparse matrices
– Two principle ways to store the list of non-zero values

row-major: store row by row (sort by row index first)

column-major: store col by col (sort by col index first)

– Note: the sparse row-major representation of a term-
document matrix is equivalent to an inverted index

(1, 0, 0), (1, 0, 1), (1, 0, 3) inverted list for term 0
(1, 1, 0), (1, 1, 2), (1, 1, 3) inverted list for term 1
(1, 2, 0), (1, 2, 1), (1, 2, 1), … inverted list for term 2
(1, 3, 3), (1, 3, 4), (1, 3, 5) inverted list for term 3

(non-zero score, row index = term id, col index = doc id)
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Vector Space Model   8/8

 Sparse matrices in Python
– Not included in numpy, we have to use scipy

sudo apt-get install python3-scipy

import scipy.sparse
nz_vals = [1, 1, 1, 1, 1, 1, …]
row_inds = [0, 0, 0, 1, 1, 1, …]
col_inds = [0, 1, 3, 0, 2, 3, …]
A = scipy.sparse.csr_matrix((nz_vals, (row_inds, col_inds)))
q = scipy.sparse.csr_matrix([0, 1, 1, 0])
scores = q.dot(A)
print(scores)

See the code from the lecture for more example usage
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Latent Semantic Indexing   1/9

 Motivation
– Let's look at our example again:

D1 and D2 and D3 are "about" surfing the web

D5 and D6 are "about" surfing on the beach

internet and web are synonyms, surfing is a polysem
= means different things in different context
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1



Latent Semantic Indexing   2/9

 Motivation
– Let's look at the query web surfing again, using dot-

product similarity as explained on slide 10

– Then sim(D3, Q) > sim(D2, Q) = sim(D5, Q)

But D2 seems just as relevant for the query as D3, only 
that the word "internet" is used instead of "web"
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Latent Semantic Indexing   3/9

 Conceptual solution

Add the missing synonyms to the documents

Then indeed: sim(D1, Q) = sim(D2, Q) = sim(D3, Q)

The goal of LSI is to do something like this automatically
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D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

Q
0
1
1
0



Latent Semantic Indexing   4/9

 A simple but powerful observation

The modified matrix has column rank 2

That is, we can write each column as a (different) linear   
combination of the same two base columns (B1 and B2)

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank
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D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0
web 1 1 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1



Latent Semantic Indexing   5/9

 Matrix factorization

Equivalently: the 4 x 6 term-document matrix can be 
written as a product  of a 4 x 2 matrix with a 2 x 6 matrix

The base vectors B1 and B2 are the underlying "concepts"

The vectors D'1, …, D'6 are the representation of the   
documents in the (lower-dimensional) "concept space"  
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D1 D2 D3 D4 D5 D6

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 2 1 1
0 0 0 1 1 1

B1 B2

1 0
1 0
1 1
0 1

D'1 D'2 D'3 D'4 D'5 D'6

1 1 1 1 0 0
0 0 0 1 1 1

= ●



Latent Semantic Indexing   6/9

 The goal of LSI
– Given an m x n term-document matrix A and k < rank(A)

– Then find a matrix A' of (column) rank k such that the 
difference between A' and A is as small as possible

Formally:   A' = argminA' m x n with rank k ‖A – A' ‖

For the ‖… ‖ we take the so-called Frobenius-norm

This is defined as ‖D ‖ := sqrt(∑ij Dij
2)

The reason for using this norm is purely technical: that 
way, the math on the next slides works out nicely
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Latent Semantic Indexing   7/9

 How to find / compute such an A'
– We first compute the so-called singular value 

decomposition (SVD) of the given matrix A :

Theorem: for any m x n matrix A of rank r, there
exist U, S, V such that  A = U ∙ S ∙ V , and where

U is an m x r matrix with U ∙ UT = Im the m x m identity matrix

S is a r x r matrix with entries only on its diagonal

V is an r x n matrix with VT ∙ V = In the n x n identify matrix

The decomposition is unique up to simultaneous 
permutation of the rows/columns of U, S, and V
Standard form: diagonal entries of S positive and sorted
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Latent Semantic Indexing   8/9

 Using the SVD our task becomes easy
– Let A = U ∙ S ∙ V be the SVD of A

– For a given k < rank(A) let

Uk = the first k columns of U now an m x k matrix

Sk = the upper k x k part of S now a k x k matrix

Vk = the first k rows of V now a k x n matrix

Note: then still Uk ∙ Uk
T = Im and Vk ∙ Vk

T = In
Let  Ak = Uk ∙ Sk ∙ Vk

T

Then Ak is a matrix of rank k that minimizes ‖A – Ak ‖
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Latent Semantic Indexing   9/9

 How to compute the SVD
– Easy to compute from the Eigenvector decomposition

Namely of the quadratic matrices A ∙ AT and AT ∙ A

– In practice, the more direct Lanczos method is used

This has complexity O(k ∙ nnz), where k is the rank and
nnz is the number of non-zero values in the matrix

Note that for term-document matrices  nnz << n ∙ m

For ES8, just use svds from scipy.sparse.linalg

See the code from the lecture for a usage example
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Using LSI for better Retrieval   1/8

 Variant 1: work with Ak instead of A

25

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.9 0.6 0.6 1.0 0.0 0.0
0.9 0.6 0.6 1.0 0.0 0.0
1.1 0.9 0.9 2.1 1.0 1.0

-0.1 0.1 0.1 0.9 1.0 1.0

Our example A from the beginning best rank-2 approximation A2



Using LSI for better Retrieval   2/8

 Variant 1: work with Ak instead of A
– Problem: Ak is a dense matrix, that is, most / all of it's

m ∙ n entries will be non-zero

Typically, both m and n will be very large, and then 
already storing this matrix is infeasible 

E.g. if m = 1000 and n = 10M   m ∙ n = 10 G
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Using LSI for better Retrieval   3/8

 Variant 2: work with Vk instead of with A
– Recall: Vk gives the representation of the documents in 

the k-dimensional concept space
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D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0
web 1 0 1 1 0 0
surfing 1 1 1 2 1 1
beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.4 0.3 0.3 0.7 0.3 0.3
0.5 0.2 0.2 0.0 -0.6 -0.6

Our example A from the beginning V2 from the SVD of A



Using LSI for better Retrieval   4/8

 Variant 2: work with Vk instead of with A
– Observation: Vk is a dense matrix, that is, most or all of 

its k ∙ n entries are non-zero

Note: the original matrix A has m' ∙ n non-zero entries, 
where m' is the average number of words in a document

So storing Vk instead of A is ok if k ≈ m' or smaller

Note: no need for a sparse representation / an inverted 
index when storing / using Vk

This is the variant you should use for ES8.3

28



Using LSI for better Retrieval   5/8

 Variant 2: work with Vk instead of with A
– Problem 2: we need to map the query to concept space

The dot-product similarity of query q with all documents is

qT ∙ Ak = qT ∙ (Uk ∙ Sk ∙ Vk) = (qT ∙ Uk ∙ Sk) ∙ Vk

Then qk
T := qT ∙ Uk ∙ Sk is query mapped to concept space

– The dot product qk
T ∙ Vk requires time ~ n ∙ k … since both

qk and Vk are dense 

In comparison: computing the similarities of q with the 
original documents requires time O(n ∙ #q) and less

where #q = number of query words in q
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Using LSI for better Retrieval   6/8

 Variant 3: expand the original documents
– In Variant 2, we have transformed both the query and 

the documents to concept space

– LSI can also be viewed as doing document expansion 
in the original space + no change in the query

Namely, let Tk = Uk ∙ Uk
T this is an m x m matrix

Then one can easily prove that Ak = Tk ∙ A

For ES8, simply compute Tk from Uk as shown, then 
compute the 50 term pairs with the largest entries in Tk
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Using LSI for better Retrieval   7/8

 Variant 3: expand the original documents
– Here is some intuition for Tk, assuming 0 or 1 entries

In practice, we can get 0-1 entries by setting all entries    
in T above a certain threshold to 1, and all others to 0
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Using LSI for better Retrieval   8/8

 Linear combination with original scores
– Experience: LSI adds some useful information to the term-

document matrix, but also a lot of noise

– In practice, one therefore uses a linear combination of the 
original scores and the LSI scores

Variant 1: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Ak

Variant 2: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qk
T ∙ Vk  

Variant 3: scores = λ ∙ qT ∙ A + (1 – λ) ∙ qT ∙ Tk ∙ A

For ES9, take Variant 2 and experiment with a good λ
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