
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 7, Tuesday December 1st, 2015
(Web App Vulnerabilities, Cookies, Unicode)

Overview of this lecture

 Organizational
– Your experiences with ES6 web application

– Questions on the forum guidelines again

 Contents
– More practically relevant web app stuff:

Vulnerabilities injection flaws, cross-site scripting

Cookies store information across web sessions

Unicode ISO-8859-1, UTF-8, URL encoding

Exercise Sheet 7: add a "UTF-8 repair" feature to your
web app from ES6 + cookies for a better user experience

2

Experiences with ES6

 Experiences + Results
– Very interesting / cool / fun / nice / fascinating exercise

– Time-consuming for some … especially for those new to
the whole web stuff, in particular JavaScript

– Lots of Googling and Stackoverflow

– URL encoding not discussed in lecture … will be today !

– Pictures from Freebase: "User Rate Limit Exceeded"

– Many of you made some really nice web apps

Let's have a look at some of them

Sorry to those with awesome web apps not shown today

3

Questions on the Forum

 Guidelines (again)
– Please feel absolutely free to ask questions

Especially if you spend hours on minor problems otherwise

– Before that consider the Zen of Self-Help for this course:

Look at the exercise sheet it is there for a reason

Look at the slides they are there for a reason

Look at the lecture code it is there for a reason

– If your code produces a surprising error message, try
pasting it into Google (the error message not your code)

This leads to a page with the solution surprisingly often

4

Vulnerabilities 1/7

 Motivation
– Web Apps are particularly vulnerable to privacy breaches

Because stuff is constantly sent back forth between your
computer and a foreign computer, with so many different
layers of software and hardware in-between

– We will briefly look at three kinds of vulnerabilities today:

Access to private data

Execution of code injected by an attacker

Communication of trusted information to an untrusted site

– For a list of the top-10 web app vulnerabilities:

google: OWASP Top Ten Project
5

Vulnerabilities 2/7

 Access to private data
– When writing or configuring a web server, take care to

serve only those files / data you want to serve

– We saw a simple problem + exploit in the last lecture

http://stromboli.cs.uni-freiburg.de:8081//proc/cpuinfo

– This is easily fixed by carefully restricting access

For example, only serve files in a certain directory subtree

Even safer: a "whitelist" of files are served … for all other
files, return a 404 (Not Found) or a 403 (Forbidden)

6

Vulnerabilities 3/7

 Code Injection
– Exploit: make a web site execute malicious code

Example 1: enter JavaScript into search box

Click me!

Example 2: send someone a mail with a link

...index.php?user=guest<script>alert("Ha!")</script>

Note: the <script>...</script> part can be made more
unsuspicious by URL-decoding (see slide 24) it:

...index.php?user=guest%3C%73%63%72%69%70...

7

Vulnerabilities 4/7

 Code Injection
– Exploit: make a web site execute malicious code

Example 3: post to forum with some script in it

I have a question<script>... JavaScript code that sends
user info by mail to evil person ...</script>

Note: The <script>...</script> will not show on the website,
but code will be executed by any client viewing the post

JS code could also open Gmail Tab and inspect private mail

– This can be fixed by carefully checking the content that is
dynamically added to a webpage

8

Vulnerabilities 5/7

 The Same-Origin-Policy (SOP)
– Domain + port of client and server URL must be identical

http://etna.cs.uni-freiburg.de:8888/search.html

http://etna.cs.uni-freiburg.de:8888/?q=zurich

– To understand why, consider the following scenario:

You somehow get redirected to an evil site that looks just
like your banking website, e.g. http://www.postbamk.de

Without the same-origin-policy, the evil site could now
communicate with the bank server like the real site

Worse: with stolen session cookie, evil person could do
anything in your name without you even participating

9

Vulnerabilities 6/7

 Exceptions to the Same-Origin-Policy (SOP)
– JavaScript can be loaded from anywhere

That way we could use jQuery without downloading it

<script src="http://code.jquery.com/jquery1.10.2.js">

– There are applications where it is actually desirable that
everybody (or many people) can access then

For example, our backend for query suggestions

Or an API to a public database

Historical note: JSON uses <script>…</script> to
circumvent SOP and became a standard  weird !

10

Vulnerabilities 7/7

 CORS = Cross-Origin Resource Sharing
– Principle: the server explicitly specifies which web sites

may use the results it returns as follows:

If the JavaScript wants to communicate with a machine
(or port) other than the one it was loaded from, then the
following additional request header is sent

Origin: http://<host name>:<port>

Depending on that header, or independent of it, the
server can then send a response header like this:

Access-Control-Allow-Origin: http://<host name>:<port>

Browser then uses the result only when the two agree

11

Cookies 1/5

 Basic mechanism
– A cookie is simply a string associated with a web page

that is stored on the client's computer

Each client has it's own cookie

Typically used for user data and preferences

– A cookie can contain any contents, but the convention is
that it contains a sequence of key-value pairs, separated
by semicolons, for example:

user=cookie-monster; prefers=kekse

– Implementation in JavaScript is very simple, just read and
write this string via the variable document.cookie

12

Cookies 2/5

 Adding key-value pairs to a Cookie
– To add a key-value pair, just write

document.cookie = "user=cookie-monster";

– Multiple assignments add to the string … weird but true

document.cookie = "user=cookie-monster";
document.cookie = "prefers=kekse";

– To overwrite the value for a key, just write again

document.cookie = "prefers=kekse";
document.cookie = "prefers=kruemel";

Inspect in browser with F12  Resources  Cookies

13

Cookies 3/5

 Getting the value for a particular key
– In raw JavaScript, need some string processing:

var cookies = document.cookie.split(";");
for (var i = 0; i < cookies.length; i++) {

var args = cookies.replace(/\s/g,"").split("=");
if (args[0] == "user") alert("Hi " + args[1] + " !!!");

}

14

Cookies 4/5

 Different kinds of cookies
– Chocolate chip cookie

Accidentally developed by Ruth Wakefield in 1930

– Session cookie … lasts as long as your browser is open

user=cookie-monster

– Persistent cookie … lasts until the specified date

user=cookie-monster; expires=Wed 04 Dec 2013 17:45

– Third-party cookies … from JavaScript from other domains

Beware: these often give access to sensitive information

15

Cookies 5/5

 In jQuery … using https://plugins.jquery.com/cookie/

– Setting a cookie

$.cookie("user", "cookie-monster");

– Value of a cooke

var user = $.cookie("user");

– Removing a cookie

$.removeCookie("user");

– Cookie with expiry date (10 days from now)

$.cookie("user", "cookie-monster", { expires: 10});

16

Unicode 1/10

 Motivation
– To represent text in binary, we need a standard for how to

represent the characters of the alphabet, numbers, etc.

– For a very long time, this standard was ASCII :

1 Byte per symbol = can represent 256 different symbols

– Obviously there are more than 256 symbols in the world

Chinese alone has (tens of) thousands of different symbols

17

Unicode 2/10

 Solution before Unicode
– Use the ASCII codes 0 – 127 for common symbols,

which (almost) everybody needs

a-z A-Z 0-9 () [] { } , . : ; " ' …

ASCII codes 0 – 31 used for control characters

– For the ASCII codes 128 – 255, have (many) different
variants, depending on the context

For example, ISO-8859-1: use the codes to encode all
the funny characters from most European languages

à á â ã ä å ç è é ë ì í î ï ð ñ ò ó ô õ ö ø …

– Problem: if you need more than one variant, you need
to switch the encoding in the middle of the document

18

Unicode 3/10

 The Unicode solution
– Simply assign a unique number, called code point, to

(almost) every character / symbol in the world, e.g.

a : 97 (hex = 61)
A : 65 (hex = 41)
ä : 228 (hex = E4)
α : 945 (hex = 03B1)
€ : 8364 (hex = 20AC)

: 128584 (hex = 1F648)

– Unicode knows 1,114,112 code points (hex: 0 .. 10FFFF)

Note: 1 Byte not enough, and 2 Bytes also not enough

19

Unicode 4/10

 UTF = Unicode Transformation Standard
– There are different schemes for how to actually

represent these code points in binary

UTF-32: always use 4 bytes per code point
obviously enough for all 1,114,112 known code points

UTF-16: use 2 bytes for the common code points,
and 4 bytes for the others … used for String in Java

UTF-8: use 1 byte for the very common code points,
and 2 or 3 or 4 bytes for the others … see next 2 slides

UTF-16 and UTF-8 are variable-byte encodings

20

Unicode 5/10

 Details of UTF-8
– 1 Byte: Code point in [0, 127] = xxxxxxx

UTF-8 code: 0xxxxxxx 7 Bits

– 2 Bytes: Code point in [128, 2047] = yyyxxxxxxxx

UTF-8 code: 110yyyxx 10xxxxxx 11 Bits

– 3 Bytes: Unicode in [2048, 65535] = yyyyyyyyxxxxxxxx

UTF-8 code: 1110yyyy 10yyyyxx 10xxxxxx 16 Bits

– 4 Bytes: Unicode in [65536, 221 - 1] = zzzzzyyyyyyyyxxxxxxxx

UTF-8 code: 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx 21 Bits

In principle, could continue with 5-byte and 6-byte sequences,
but UTF-8 stops here, since 221 ≈ 2M is enough RFC 3629

21

Unicode 6/10

 UTF-8 has the following nice properties
– ASCII compatible = a string of characters with ASCII

codes < 128 is the same in ASCII as in UTF-8

So old C / C++ code only fails on the special characters

– ISO-8859-1 compatible = characters with code 1xyyyyyy
have the 2-byte UTF-8 encoding 1100001x 10yyyyyy

– Only rarely used characters need more than 2 bytes

– Easy to decode: codes start and end at byte boundaries

– Can decode starting from anywhere within a string

Just move left to the next byte not starting with 10

22

Unicode 7/10

 Some more properties of UTF-8
– In a multi-byte UTF-8 character all bytes are ≥ 128, and

vice versa such bytes occur only for multi-byte characters

– The number of leading 1s in the first byte of a multi-byte
character is equal to the number of bytes of its code

– For every Unicode in [0, 221 - 1] there is exactly one
valid UTF-8 multi-byte sequence

– But vice versa not all multi-byte sequences are valid UTF-8

For example 1100000x 10xxxxxx is not valid

Should be encoded with 1 byte: 0xxxxxxx

23

Unicode 8/10

 URL decoding and encoding, motivation
– In a URL, only a restricted character set is allowed:

a-z A-Z 0-9 $ % / - _ . + ! * … and a few more

In particular, not allowed: space, ä, ã, â, …

– Arguments of GET request are part of the URL

In particular, the ?q=... part of your web app for ES6

For ES7 (city search), this part can contain arbitrary
characters, in particular umlauts as in München

24

Unicode 9/10

 URL decoding and encoding, realization
– Special characters are encoded by a % followed by the

code in hex-decimal … for example:

If encoding of web page is UTF-8

ä : UTF-8 code C3A4  URL-encoded as %C3%A4

If encoding of web page is ISO-8859-1:

ä : ISO-8859-1 code E4  URL-encoded as %E4

25

Unicode 10/10

 Implementation Advice for ES7
– To view the byte-wise contents of a file, independent

of it's encoding use the Linux tool xxd or xxd –b

Inside an IDE, Text Editor, or Console what you see is
already an interpretation of the contents of the file,
assuming a certain encoding, e.g. UTF-8 or ISO-8859-1

– Beware when reading the file into a string

Java: read into byte[] to avoid implicit conversion

Python: use decode

C++: convert to std::wstring (= std::string<wchar_t>)

26

References

 CORS
– http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

– http://en.wikipedia.org/wiki/Cross-site_scripting

 Cookies
– http://en.wikipedia.org/wiki/HTTP_cookie

– http://www.w3schools.com/js/js_cookies.asp

 UTF-8, URL-encoding and -decoding
– http://en.wikipedia.org/wiki/UTF-8

– http://www.utf8-chartable.de

– http://www.w3schools.com/tags/ref_urlencode.asp

27

