
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 6, Tuesday November 24th, 2013
(How to build a web application)

Overview of this lecture

 Organizational

– Your experiences with ES5 fuzzy prefix search

 Contents

– How to build a search web application

Sockets creation and communication

Hypertext HTTP, Mime types, HTML, CSS

JavaScript DOM, AJAX, JSON, jQuery

– Exercise Sheet 6: build a web app that displays fuzzy
prefix matches (ES5) as you type your query

2

Experiences with ES5 1/2

 Summary / excerpts

– Again, interesting exercise which many of you liked

– Some had problems understanding the algorithm

Partially, because explanation at the end of last lecture
were brief, because we ran out of time, sorry for that !

– Confused, because change in code from lecture needed

– Confused, because #PED in Wiki Table same for everyone

– Confused, because normalization on sheet / in code differ

– First |x| + 1 columns suffice for PED computation … NO !

– With intensity: https://youtu.be/FiQnH450hPM

3

Experiences with ES5 2/2

 Results

– Improvement of q-gram based algorithm over baseline

The H ≈ 3 times faster (ambiguous query)

Terinator > 10 times faster (typical query)

Figct CL > 2000 times faster (typical query)

– For Python: all queries unbearably slow with baseline, but
feasible and often fast with q-gram based algorithm

– For Java and C++: similar situation, but baseline still
bearable for a few 100K records

4

Search web application

 Main components

– Server that delivers the web pages

– The contents of the web pages

– The code that runs as part of the web pages and
communicates with the server that answers queries

 Implementation

– Many technologies behind this, each quite complex

– But the basic principle behind each is easy to understand

In the following, brief motivation + example for each

Along with that we will code a toy web application live

5

Socket Communication 1/5

 Motivation

– Two programs / processes communicating with each
other, possibly (and often) on two different machines

– For a typical web application:

Browser asking for (static) web pages

Code in web page asking for (dynamic) contents

– Endpoint of such a communication channel is called socket

– Each socket belongs to a particular machine (host) and has a
unique id (port) on that machine

The same machine can have many communication channels,
hence the concept of (many) ports

6

Socket Communication 2/5

 High-level procedure

– Server side:

Create a socket and bind it to a give port

Listen on that port for incoming requests

Read request, compute result, send result

– Client side:

Connect to socket on server (need machine name + port)

OS automatically assigns unique port on client machine

Send request, wait for result

7

Socket Communication 3/5

 Implementation, server side

– All programming languages have standard libraries for
convenient socket communication (for server and client)

Python socket

Java java.net.ServerSocket

C++ boost::asio (asio = asynchronous IO)

We provide code for the server socket communication
on the Wiki, in all three languages

Let's write the server code in Python together

8

Socket Communication 4/5

 Implementation, server side, Python

– Create socket, bind to port, and listen

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((socket.gethostname(), port))
server.listen(5)

– Wait for request

(client, address) = server.accept()

– Read request and send result

request= client.recv(8192).decode("ascii")
client.send(result.encode("ascii"))
client.close()

9

AF = Address Family
INET = Internet (IPv4)

5 = allow to accept that
many requests at once

8192 = read at most
this many bytes

Socket Communication 5/5

 Implementation, client side

– For a web application, suffices to implement the server

– The web browser plays the role of the client

– We can also test via simple communication programs, e.g.

telnet <host> <port>

Establishes a communication channel to the given machine
and port

10

Hypertext 1/7

 HTTP = Hypertext Transfer Protocol

– Used by the browser to communicate with (web) server

– The typical request looks as follows:

GET /search.html HTTP/1.1 …

/search.html = part of URL after the http://<host>:port

– The typical results is as follows:

HTTP/1.1 200 OK
Content-Length: 653
Content-Type: text/html

… the 653 bytes of the content …

Note: HTTP demands that newlines are encoded as \r\n

11

Hypertext 2/7

 HTTP = Hypertext Transfer Protocol

– There are many more request types … for example:

POST (instead of GET)

For longer requests, that are not sent as part of the URL

– And many more headers … for example

HTTP/1.1 404 Not found

To indicate that the requested resource does not exist

For ES6, just implement enough to make the browser happy

12

Hypertext 3/7

 Content Types

– Standard names for the different types of content sent
across the internet

Also called MIME = Multipurpose Internet Mail Extensions

– Examples

text/plain plain text
text/html HTML … see slides 15 + 16
text/css CSS … see slide 17
application/javascript JavaScript … see slides 19 – 26
application/json JSON … see slide 25
application/pdf PDF

13

Hypertext 4/7

 Browser Development Console

– Extremely useful for debugging web applications, or in
general to understand better what is going on

Chrome F12 / Ctrl+Shift+I

Firefox F12 / Ctrl+Shift+I

Internet Explorer F12

– Important sections for today and ES6:

Network: requests sent and results received

Elements: elements of the HTML page … see next slides

Console: output from the JavaScript … see slides 18 – 26

14

Hypertext 5/7

 HTML = Hypertext Markup Language

– Language for specifying the content of a web page

– XML-like language, general structure:

<html>
<head>

… meta information + includes …
</head>
<body>

… contents of the page …
</body>

</html>

15

Hypertext 6/7

 HTML

– Example tags for the <head>…</head> section:

<link rel="stylesheet" type="text/css" href="…"/>
<script src="…"></script>

Include style information and code … see coming slides

– Example tags for the <body>…</body> section

<h1>…</h1> Level-1 heading
<p> … <p> A paragraph of text
<input> … </input> Input field
<div> … </div> Arbitrary "logical" section

16

Hypertext 7/7

 CSS = Cascading Style Sheets

– Specify style information (layout, font, color, etc)
independent from the contents of the page

– Has its own (simple) syntax … for example, all level-1
headings in blue and boldface

h1 { color : blue; font-weight: bold }

– When several rules apply to same element, the "most
specific" rule wins

Hence the "cascading" … used a lot for larger web sites

For ES6, make some non-trivial changes to the CSS
from the lecture, for a more pleasing appearance

17

JavaScript 1/9

 Motivation

– A language that runs as part of a web page

Can do (almost) arbitrary computation

Can do (almost) arbitrary communication

Can dynamically changing the contents of the web
page in response to user actions

Nowadays, there is hardly a web page anymore
without JavaScript in it

18

JavaScript 2/9

 Language features

– An object-oriented script language, with a syntax similar
to Java, hence the name

Speed similar to Python, when interpreted line by line

Modern browsers perform just-in-time (JIT) compilation,
in order to achieve speeds similar to Java

– Variables are untyped

var x = 1; // Scalar value.
var s = "doof"; // String.
var a1 = [1, "doof", bloed"]; // Array (mixed types).
var a2 = { "yes" : 5, "no" : 3 } // Associative array.

19

JavaScript 3/9

 DOM = Document Object Model

– Well-defined scheme for how to address elements in a
web page, in particular by JavaScript code

– For example: get the contents of an element with a
particular id on the web page

In the HTML:

<div id="result">NO RESULT YET</div>

In the JavaScript:

document.getElementById("result").innerHTML = "42";

20

JavaScript 4/9

 AJAX = Asynchronous JavaScript and XML

– Old name for communication between JavaScript in
browser and some server elsewhere … typical code:

xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {
response = xhr.responseText;
… process the response … }}

xhr.open("GET", "<url>", true);
xhr.send();

Much simpler with libraries like jQuery … next slides

21

JavaScript 5/9

 jQuery

– jQuery is a JavaScript library with convenient functions
for all the common stuff … include via

<script src="http://code.jquery.com/..."></script>

– Usage examples

$(document).ready(function() { … })

Execute included code when HTML has fully loaded

$("#heading").html("Different text")

Change contents of element with id "heading"

22

JavaScript 6/9

 jQuery

– Offers a much cleaner separation between static elements
(HTML) and dynamic code (JavaScript)

– For example: do something after each keypress

Raw JavaScript:

HTML: <input id="query" onkeypress="myFct()"/>

JavaScript: myFct() { /* … code here … */ }

With jQuery:

HTML: <input id="query">

JavaScript: $("#query").keypress(function() { … })

23

JavaScript 7/9

 jQuery, communication with server

– For example: launch GET request and do something
with the result:

url = "http://" + host + ":" + port + "/?q=" + query;
$.get(url, function(result) {

console.log("Server replied: " + result);
$("#result").html(result);

})

Note: writing to the console is quite useful for debugging

24

JavaScript 8/9

 JSON = JavaScript Object Notation

– The result from a computation is often a complex object,
e.g. an array or associative array

– If sent as a mere string, we need code to parse that
string on the JavaScript side

– JSON is content in the form of ready-to-use JavaScript
code … for example:

{ "numVowels" : 5, "numConsonants" : 13 }

25

JavaScript 9/9

 jQueryUI

– Extension of jQuery for more complex UI elements

<script src="https://code.jquery.com/ui/..."></script>

– For example, autocompletion from fixed set of strings

– HTML: <input id="query">

– JavaScript: $("query").autocomplete({
source: [… array of strings from

which to autocomplete …]
});

26

References

 Relevant Wikipedia articles (in order of appearance)

http://en.wikipedia.org/wiki/Network_socket

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

http://en.wikipedia.org/wiki/Internet_media_type

http://en.wikipedia.org/wiki/HTML

http://en.wikipedia.org/wiki/Cascading_Style_Sheets

http://www.w3schools.com/js

http://en.wikipedia.org/wiki/Document_Object_Model

http://en.wikipedia.org/wiki/Ajax_(programming)

http://jquery.com/ http://jqueryui.com/

27

