
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 5, Tuesday November 17th, 2015
(Fuzzy Search, Edit Distance, q-Gram Index)

Overview of this lecture

 Organizational
– Experiences with ES4 Compression, Codes, Entropy

 Contents
– Fuzzy search type uniwercity, find university

– Edit Distance a standard similarity measure

– Q-gram Index index for efficient fuzzy search

Exercise Sheet 5: implement error-tolerant prefix search
using a q-gram index and prefix edit distance

2

Experiences with ES4 1/4

 Summary / excerpts
– Few liked it, for some it was OK, many didn't like it

"Compared to sheets 1 – 3, this sheet was no fun"

Only 20% theory in this course, but that's necessary

– Confusion between "code" and "codeword"

– Please explain Lagrange optimization in the lecture

I will sketch the solutions to ES4 on the next slides

As usual, master solutions in the SVN + on the Wiki

– First steps with LaTeX cost some of you some time

– Breakfast: Muesli, Currywurst, neighbor's cat, nothing, …

3

Experiences with ES4 2/4

 Proof sketch for Exercise 4.2
– To show: no prefix-free code with length log2 x + O(1)

4

Experiences with ES4 3/4

 Proof sketch for Exercise 4.3
– To show: Golomb is optimal for pi = (1 – p)i – 1 ∙ p

– For that we have to show that: Li ≤ - log2 pi + O(1)

5

Experiences with ES4 4/4

 Proof sketch for Exercise 4.4
– To show: ∑i pi ∙ Li ≥ - ∑i pi ∙ log2 pi when ∑i 2-Li ≤ 1

– Let us assume ∑i 2-Li = 1 … generally: ∑i 2-Li =: A ≤ 1

1. Define L(L1, …, Ln, λ) = ∑i pi ∙ Li + λ · (∑i 2-Li – 1)

2. Set partial derivatives = 0 to find all local optima

3. Only one local optimum also global optimum

6

Fuzzy Search 1/7

 Motivation and problem setting
– Problem setting in the lectures so far:

Given a document collection and a query, find documents
relevant for the query

– Two main challenges:

Challenge 1: good model of relevance

Challenge 2: preprocess the document collection (= build
a suitable index), so that queries can be answered fast

7

Fuzzy Search 2/7

 Motivation and problem setting
– Problem setting in the lecture today:

Given a dictionary and a query, or part of a query, suggest
matching items from that dictionary … for example:

Query: uni Match: university prefix search
Query: uni*ty Match: university wildcard search
Query: univerty Match: university fuzzy search

– For fuzzy search, we have the same two challenges:

Challenge 1: good model of what matches

Challenge 2: preprocess the dictionary (= build a suitable
index), so that we find those matches fast

8

Fuzzy Search 3/7

 Possible origins for the dictionary
– Popular queries extracted from a query log

Basis for Google's query-suggestion feature

– Words + common phrases from a text collection

Extracting common phrases from a given text collection
is an interesting problem by itself, however, not one we
will deal with in this course

– A list of names of entities (people, places, things, …)

Your dictionary for ES5 will simply be the titles of the
movies dataset we used for ES1 and ES2, with scores

9

Fuzzy Search 4/7

 Matching vs. Search
– Once we have found a matching string or strings,

we can do an literal search like before, for example:

1. Type: uni

2. Match: universe, university, …

3. Search: universe OR university OR …

– In todays lecture, we will only look at parts 1 + 2 =
finding matching strings in the dictionary

The search part is also interesting when the number of
matching strings is very large; then a simple OR of a lot
of strings will be too slow and we need better solutions

10

Fuzzy Search 5/7

 Simple solution
– Iterate over all strings in the dictionary, and for each

check whether it matches

– This is what the Linux commands grep and agrep do

grep –x uni.* <file>

grep –x un.*ity <file>

agrep –x –2 univerty <file>

All matching lines in <file> will be output

The option –x means match whole line (not just a part)

The option –2 means allow up to two "errors" … next slide

11

Fuzzy Search 6/7

 Simple solution, check match of single string
– Given a query q and a string s

– Prefix search: easy-peasy

Just compare q and the first |q| characters of s … can be
accelerated by finding the first match with a binary search

– Wildcard search: also easy if only one *

If q = q1*q2, check that |s| > |q1| + |q2| and then
compare the first |q1| characters of s with q1 and the
last |q2| characters of s with q2

– Fuzzy search: not so easy

The focus of the rest of today's lecture

12

Fuzzy Search 7/7

 Simple solution, time complexity
– The time complexity is obviously n ∙ T, where

n = #records, T = time for checking a single string

– For fuzzy search, T ≈ 1µs ... find out yourself in ES5

– In search, we always want interactive query times

Respond times feel interactive until about 100ms

– So the simple solution is fine for up to ≈ 100K records

– For larger input sets, we need to pre-compute something

We will build a q-gram index … slides 20 – 26

13

Edit distance 1/6

 Definition … aka Levenshtein distance, from 1965

– Definition: for two strings x and y

ED(x, y) := minimal number of tra'fo's to get from x to y

– Transformations allowed are:

insert(i, c) : insert character c at position i

delete(i) : delete character at position i

replace(i, c) : replace character at position i by c

14

Vladimir
Levenshtein

*1935, Russia

Edit distance 2/6

 Some simple notation
– The empty word is denoted by ε

– The length (#characters) of x is denoted by |x|

– Substrings of x are denoted by x[i..j], where 1 ≤ i ≤ j ≤ |x|

 Some simple properties
– ED(x, y) = ED(y, x)

– ED(x, ε) = |x|

– ED(x, y) ≥ abs(|x| - |y|) abs(z) = z ≥ 0 ? z : -z

– ED(x, y) ≤ ED(x[1..n-1], y[1..m-1]) + 1 n = |x|, m = |y|

15

Edit distance 3/6

 Recursive formula
– For |x| > 0 and |y| > 0, ED(x, y) is the minimum of

(1a) ED(x[1..n], y[1..m-1]) + 1

(1b) ED(x[1..n-1], y[1..m]) + 1

(1c) ED(x[1..n-1], y[1..m-1]) + 1 if x[n] ≠ y[m]

(2) ED(x[1..n-1], y[1..m-1]) if x[n] = y[m]
– For |x| = 0 we have ED(x, y) = |y|
– For |y| = 0 we have ED(x, y) = |x|

For a proof of that formula, see e.g. Algorithmen und
Datenstrukturen SS 2015, Lecture 11a, slides 18 – 23

16

Edit distance 4/6

 Algorithm for computing ED(x, y)
– The recursive formula from the previous slide naturally

leads to the following dynamic programming algorithm

– Takes time and space Θ(|x| ∙ |y|)

17

Edit distance 5/6

 Prefix edit distance
– The prefix edit distance between x and y is defined as

PED(x, y) = miny' ED(x, y') where y' is a prefix of y

– For example

PED(uni, university) = 0 … but ED = 7

PED(uniwer, university) = 1 … but ED = 5

– Important for fuzzy search-as-you type suggestions

By now, all the large web search engines have this
feature, because it is so convenient for usability

18

Edit distance 6/6

 Computation of the PED
– Compute the entries of the |x| ∙ |y| table, just as for ED

– The PED is just the minimum of the entries in the last row

– Important optimization: when |x| << |y| and you only
want to know if PED(x, y) ≤ δ for some given δ:

Enough to compute the first |x| + δ + 1 columns … verify !

19

q-Gram Index 1/7

 Definition of a q-gram
– The q-grams of a string are simply all substrings of length q

university: uni, niv, ive, ver, ers, rsi, sit, ity

The number of q-grams of a string x is exactly |x| - q + 1

– For fuzzy search, we will pad the string with q – 1 special
symbols (we use $) in the beginning and in the end

university $$university$$

q-grams are then: $$u, $un, uni, …, sit, ity, ty$, y$$

The number is then |x| + q – 1, where x is the original string

We will see in a minute, why that padding is useful

20

q-Gram Index 2/7

 Definition of a q-gram index
– For each q-gram store an inverted list of the strings (from

the input set) containing it, sorted lexicographically

$un : unanimous, unexpected, university, unnötig, …

ers : aargauerstraße, …, university, unverständlich, …

As usual, store ids of the strings, not the strings themselves

Note: very similar to an inverted index, just with q-grams
instead of words

Let's adapt our code from Lecture 1 to q-grams

21

q-Gram Index 3/7

 Space consumption
– Each record x contributes |x| + O(1) ids to the inverted lists

– The total number of ids in the lists is hence about the
number of characters (not words) in the dictionary

If we use 4 bytes per id, the index would hence be at least
four times bigger than the original dictionary

This can be reduced significantly using compression

For ES5, it is fine to store the lists uncompressed

22

q-Gram Index 4/7

 Fuzzy search with a q-gram index, using ED
– Consider x and y with ED(x, y) ≤ δ

– Intuitively: if x and y are not too short, and δ is not too
large, they will have one or more q-grams in common

– Example: x = HILLARY, y = HILARI

$$HILLARY$$ $$H, $HI, HIL, ILL, LLA, LAR, ARY, RY$, Y$$

$$HILARI$$ $$H, $HI, HIL, ILA, LAR, ARI, RI$, I$$

number of q-grams in common = 4

Note: the padding in the beginning gives us two additional
3-grams in common (because no mistake in first letter)

23

q-Gram Index 5/7

 Fuzzy search with a q-gram index, using ED
– Formally: let x' and y' be the padded versions of x and y

Then: comm(x', y') ≥ max(|x|, |y|) – 1 – (δ – 1) ∙ q

Example from slide before: |x| = 7, |y| = 6, δ = 2, q = 3

Hence comm(x', y') ≥ 3 … and in the example comm = 4

Verify: in the worst case, comm(x', y') = 3 can happen

– Proof: consider the longer string, which has max(|x|, |y|) +
q – 1 q-grams … because of the left and right $ padding

Then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos affect at most δ ∙ q q-grams

24

q-Gram Index 6/7

 Query algorithm, using ED
– Given a query x and a q-gram index for the input strings

– Compute q-grams of x' and fetch their inverted lists

For example: x = HILARI, x' = $$HILARI$$

Fetch lists for: $$H, $HI, HIL, ILA, LAR, ARI, RI$, I$$

– Merge these lists and keep track of which record contains how
many q-grams … see TIP file on the Wiki

– For each record y in the merge results, check whether the
count is ≥ max(|x|, |y|) – 1 – (δ – 1) ∙ q

If no: discard this y, we know that ED(x, y) > δ

If yes: compute ED(x, y) and check if ED(x, y) ≤ δ

25

q-Gram Index 7/7

 Fuzzy prefix search
– Use the same algorithm, but with a different bound

– Assume that PED(x, y) ≤ δ

– Let x' and y' be x and y with q – 1 times $ to the left only

Padding on the right makes no sense for prefix search

– Then we have: comm(x', y') ≥ |x| – q ∙ δ

Note that for δ = 1, this is ≥ 1 only for |x| > q

– Proof: Consider x, which has exactly |x| q-grams

Then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos change at most δ ∙ q q-grams

26

References

 Textbook
Section 3: Tolerant Retrieval, in particular:

Section 3.2: Wildcard queries

Section 3.3: Spelling correction

 Wikipedia
http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.org/wiki/Approximate_string_matching

http://en.wikipedia.org/wiki/Levenshtein_distance

27

