Information Retrieval

WS 2015 / 2016

Lecture 4, Tuesday November 10th, 2015
(Compression, Codes, Entropy)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg
Overview of this lecture

- **Organizational**
 - Your experiences with ES3 Efficient List Intersection
 - Assistant: Björn → Elmar

- **Compression**
 - Motivation saves space and query time
 - Codes Elias, Golomb, Variable-Byte
 - Entropy Shannon's theorem

 - **Exercise Sheet 4:** prove the optimality of some of the codes + investigate the limits of what can be achieved

We take a break from implementation work this week
Experiences with ES3 1/2

Summary / excerpts

- Interesting exercise, many liked performance tweaking
- Submissions are getting less ... not unusual though
- Sentinels already implemented in C++, but not in Java
- Not so easy to improve on a tuned baseline
- Complex improvements can cost more than they help

 E.g. galloping always slower than binary search for some
- Skip pointers can be simulated via a simple offset

 Like a low-budget version of galloping search
- Seemingly insignificant code changes can affect runtime
Experiences with ES3 2/2

Results

- Three inverted lists of different lengths

<table>
<thead>
<tr>
<th>Category</th>
<th>Postings</th>
<th>Repeated</th>
</tr>
</thead>
<tbody>
<tr>
<td>film</td>
<td>171,951</td>
<td>100 times</td>
</tr>
<tr>
<td>comedy</td>
<td>27,706</td>
<td>100 times</td>
</tr>
<tr>
<td>2015</td>
<td>285</td>
<td>100 times</td>
</tr>
</tbody>
</table>

- Query film+2015, list length ratio = 603
 Any of galloping, skip ptrs, bin. search give large speedup

- Query comedy+2015, list length ratio = 97
 Skipping helps, but not too much

- Query film+comedy, list length ratio = 6
 Skipping costs more than it helps, switch to tuned baseline
Motivation

- Inverted lists can become very large

Recall: length of an inverted list of a word = total number of occurrences of that word in the collection

For example, in the English Wikipedia:

- film: 1,667,147 occurrences
- year: 2,052,964 occurrences
- one: 4,022,417 occurrences

- Compression potentially saves space and time
Index in **memory**

- Then compression saves memory (obviously)
- Also: the index might be too large to fit into memory without compression, and with compression it does fit

Fitting in memory is good because reading from memory is much much **much** faster than reading from disk

Transfer rate from memory ≈ 2 GB / second
Transfer rate from disk ≈ 50 MB / second
Index on disk:

- Then compression saves disk space (obviously)

- But it also saves query time, here is a realistic example:

 Disk transfer time: 50 MB / second
 Compression rate: Factor 5
 Decompression time: 30 MB / second
 Inverted list of size: 50 MB

 Reading uncompressed: 1.0 seconds → 50 MB
 Reading compressed: 0.2 seconds → 10 MB
 Decompressing: 0.3 seconds → 50 MB

 Reading compressed + decompression **twice faster** compared to reading uncompressed
Gap encoding

- Example inverted list (doc ids only):
 3, 17, 21, 24, 34, 38, 45, ..., 11876, 11899, 11913, ...

- Numbers small in the beginning, large in the end, using an `int` for each id would be **4 bytes per id**

- Alternative: store differences from one item to next:
 +3, +14, +4, +3, +10, +4, +7, ..., +12, +23, +14, ...

- This is called **gap encoding**

- Works as long as we process the lists from left to right

- Now we have a sequence of mostly (but not always) small numbers ... how do we store these in little space?
Binary representation

- We can write number x in binary using $\lceil \log_2 x \rceil + 1$ bits

<table>
<thead>
<tr>
<th>x</th>
<th>binary</th>
<th>number of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>3</td>
</tr>
</tbody>
</table>

- This encoding is optimal in a sense ... see later slides

- So why not just (gap-)encode like this and concatenate:

 $+3$, $+14$, $+4$, ... → 11, 1110, 100, ... → 111110100...
Prefix-free codes, definition

- Decode bit sequence from the last slide: 111110100

 This could be: +3, +14, +4 → 11, 1110, 100

 Could also be: +7, +6, +4 → 111, 110, 100

 Or: +3, +3, +2, + 4 → 11, 11, 10, 100

- Problem: we have no way to tell where one code ends and the next code begins

 Equivalently: some codes are prefixes of other codes

- In a **prefix-free code**, no code is a prefix of another

 Then decoding from left to right is unambiguous
Elias-Gamma ... from 1975

- Write \(\lfloor \log_2 x \rfloor \) zeros, then \(x \) in binary like on slide 9
- Prefix-free, because the number of initial zeros tells us exactly how many bits of the code come afterwards
- Code for \(x \) has a length of exactly \(2 \cdot \lfloor \log_2 x \rfloor + 1 \) bits

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 010 \\
3 & \rightarrow 011 \\
4 & \rightarrow 00100 \\
& \vdots \\
10 & \rightarrow 0001010
\end{align*}
\]
Elias-Delta ... also from 1975

- Write \(\lfloor \log_2 x \rfloor + 1 \) in Elias-Gamma, followed by \(x \) in binary (like on slide 9) but **without** the leading 1

- Elias-Delta is also prefix-free and the length of the code length is \(\lfloor \log_2 x \rfloor + 2 \log_2 \log_2 x + O(1) \) bits

Pr. in Exercise 4.1

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 0100 \\
3 & \rightarrow 0101 \\
4 & \rightarrow 011000 \\
5 & \rightarrow 011010 \\
\vdots & \\
10 & \rightarrow 00100010
\end{align*}
\]
Codes 3/4

Golomb (not Gollum) ... from 1966

- Comes with an integer parameter M, called **modulus**
- Write x as $q \cdot M + r$, where $q = x \text{ div } M$ and $r = x \text{ mod } M$
- The code for x is then the concatenation of:
 - q written in unary with 0s
 - a single 1 (as a delimiter)
 - r written in binary

Example:

- $M = 16$, $x = 70 = 4 \cdot 16 + 6$
- Code for x is 000010110

Solomon Golomb
1932 – still alive
Variable-Byte (VB)

- Idea: use **whole bytes**, in order to avoid the (expensive) bit fiddling needed for the previous schemes

 VB often used in practice, for exactly that reason

- Use one bit of each byte to indicate whether this is the last byte in the current code or not

- VB is also used for **UTF-8 encoding** ... see later lecture

\[x = 521 = 4 \cdot 128 + 9 \]

VB code for x

000010000001001

Should be 521 unibyte.

Byte 1

1000000000000000

Indicates that code continues

Byte 2

0000000000000001

Indicates last byte of code

Uni-binery
Motivation

- Which code compresses the best?

 It depends!

 But on what?

- Roughly: it depends, on the relative frequency on the numbers/symbols we want to encode

 For example, in natural language, an "e" is much more frequent than a "z"

 So we should encode "e" with less bits than "z"

- The next slides will make this more precise
Entropy

- **Intuitively:** the information content of a message = the optimal number of bits to encode that message
- **Formally:** defined for a discrete random variable X

Without loss of generality range of $X = \{1, ..., m\}$

Think of X as generating the symbols of the message

Then the **entropy** of X is written and defined as

$$H(X) = - \sum_i p_i \log_2 p_i$$

where $p_i = \text{Prob}(X = i)$

E.g. m symbols, each equally likely $\Rightarrow p_i = \frac{1}{m}$

$\Rightarrow H(X) = \sum_{i=1}^{m} \frac{1}{m} \cdot \log_2 \frac{1}{m} = \log_2 m$
Shannon's source coding theorem ... from 1948

Let X be a random variable with finite range

For an arbitrary prefix-free (PF) encoding, let $L(x)$ be the length of the code for $x \in \text{range}(X)$

(1) For any PF encoding it holds: $E L(X) \geq H(X)$

(2) There is a PF encoding with: $E L(X) \leq H(X) + 1$

where E denotes the expectation

In words: no code can be better than the entropy, and there is always a code as good

Claude Shannon
1916 – 2001
Central Lemma ... to prove the source coding theorem

- Denote by L_i the length of the code for the i-th symbol, then

1. Given a PF code with lengths L_i \(\Rightarrow \sum_i 2^{-L_i} \leq 1 \)

2. Given L_i with $\sum_i 2^{-L_i} \leq 1$ \(\Rightarrow \) exists PF code with length L_i

- Note: $\sum_i 2^{-L_i} \leq 1$ is known as "Kraft's inequality"
Proof of central lemma, part (1)

- To show: given a PF code with lengths $L_i \Rightarrow \sum_i 2^{-L_i} \leq 1$

- Consider the following random experiment:

 Generate a random binary sequence, and pick each bit independent from all other bits

 Stop when you have a valid code, or when no more code is possible ... well-defined for PF codes only!

- Let C_i be the event that code i is generated

 $\Pr(C_1 \cup C_2 \cup \ldots \cup C_m) = 1$

 $= \Pr(C_1) + \Pr(C_2) + \ldots + \Pr(C_m) = \sum_{i=1}^{m} 2^{-L_i}$

 $\Pr(C_i) = 2^{-L_i}$
Proof of central lemma, part (2)

- To show: \(L_i \) with \(\sum_i 2^{-L_i} \leq 1 \) \(\Rightarrow \) exists PF code with length \(L_i \)
- Consider a complete binary tree of depth \(\max L_i \)
- Mark all left edges 0, and all right edges 1
- Consider the code lengths \(L_i \) in sorted order, smallest first
- Then iterate: pick a path of length \(L_i \) from the root, with no previous path as prefix ... this gives a PF code for symbol \(i \)

\[
\begin{align*}
L_1 &= 1, L_2 = 2, L_3 = 3, L_4 = 3 \\
\sum 2^{-L_i} &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} = 1 \text{ ok.}
\end{align*}
\]
Proof of source coding theorem, part (1)

- To show: for any PF encoding \(E L(X) \geq H(X) \)
- By definition of expectation: \(E L(X) = \sum_i p_i \cdot L_i \) (1)
- By Kraft's inequality: \(\sum_i 2^{-L_i} \leq 1 \) (2)
- Using Lagrange, it can be shown that, under the constraint (2), (1) is minimized for \(L_i = \log_2 \frac{1}{p_i} \)

\[E L(X) = \sum_i p_i \cdot L_i \Rightarrow \sum_i p_i \cdot \log_2 \frac{1}{p_i} = H(X) \]

LAGRANGE (exercise 4.4):

\[L = \sum_{i=1}^m p_i \cdot L_i + \lambda (1 - \sum_{i=1}^m 2^{-L_i}) \]

\[2^{-L_i} = e^{-\lambda \cdot \ln 2 \cdot L_i} \]

\[\frac{\partial L}{\partial L_i} = p_i + \lambda \cdot \ln 2 \cdot 2^{-L_i} = 0 \Rightarrow \ldots \Rightarrow L_i = \log_2 \frac{1}{p_i} \]
Proof of source coding theorem, part (2)

- Show: there is a PF encoding with $E L(X) \leq H(X) + 1$

- Let $L_i = \lfloor \log_2 \frac{1}{p_i} \rfloor$, then $\sum_i 2^{-L_i} \leq 1$

 Note that rounding is necessary because the code length must be an integer, and that we need to round upwards, so that Kraft's inequality holds

- By the central lemma, part (2), there then exists a PF code with code lengths L_i

- By definition of expectation: $E L(X) = \sum_i p_i \cdot L_i$

 $E L(X) = \sum_{i=1}^{m} p_i \cdot \log_2 \frac{1}{p_i} \leq \sum_{i=1}^{m} p_i \cdot \log_2 \frac{1}{p_i} + \sum_{i=1}^{m} p_i = H(X) + 1$
Entropy-optimal codes

- Consider a PF code with $L_i = \text{code length for symbol } i$ and $p_i = \text{probability for symbol } i$

- We say that the code is optimal for distribution p_i if

$$L_i \leq \log_2 \frac{1}{p_i} + 1$$

Then $E L(X) \leq H(X) + 1$ and by Shannon's theorem this is the best we can hope for.

For the optimality proofs from Exercise Sheet 4, it suffices that you show $L_i \leq \log_2 \frac{1}{p_i} + O(1)$
Universal codes

- A prefix-free code is **universal** if for every probability distribution over the symbols to be encoded

 \[\mathbb{E} L(X) = O(H(X)) \]

 That is, the expected code length is within a constant factor of the optimum for *any* distribution

- Elias-Gamma, Elias-Delta, Golomb, and Variable-Byte are all universal in this sense

 For a finer distinction, the definition of optimality from the previous slide is better

 \[\mathbb{E} L(X) \leq H(X) + 1 \text{ versus } \mathbb{E} L(X) = O(H(X)) \]
Entrophy 11/12

- Optimality of Elias-Gamma
 - Recall: code length for Elias-Gamma is $L_i = 2 \lceil \log_2 i \rceil + 1$
 - For which probability distribution is this entropy-optimal?
 - We need $L_i = 2 \lceil \log_2 i \rceil + 1 \leq \log_2 1/p_i + 1$
 - This suggests something like $p_i \approx 1/i^2$
 - Let $p_i = 1/i^2$ for $i \geq 2$, and p_1 such that $\sum_i p_i = 1$
 That is, numbers $i \geq 2$ occur with probability $1/i^2$
Optimality of Golomb

- Consider the following random experiment for the generation of an inverted list L of length m:

 Include each document i in L with probability $p = m/N$, independently of each other, where $N = \#\text{documents}$

- Let G be a fixed gap in this inverted list, then

 $\Pr(G = i) = (1 - p)^{i - 1} \cdot p =: p_i$ for $i = 1, 2, 3, \ldots$

- Exercise 4.3: prove that Golomb is optimal for this distr.

- Bottom line: Golomb is optimal for gap-encoded lists

 But not practical, because of the bit fiddling, see slide 14
References

- **Textbook**

 Section 5: Index compression

 Section 5.3: Postings file compression some codes only

- **Wikipedia**

