
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 3, Tuesday November 3rd, 2015
(Efficient List Intersection)

Overview of this lecture

 Organizational

– Your experiences with ES 2 Ranking

– Using built-in functions Beware !!

 Contents

– List Intersection Recap, Time Measurement

– Non-algorithmic improvements Arrays, Branching, Sentinels

– Algorithmic improvements Galloping Search, Skip Pointers

Exercise Sheet 3: implement list intersection and make it
as fast as possible on a small benchmark we have prepared

2

Experiences with ES2 1/4

 Summary / excerpts

– Time-intensive for many, mainly due to debugging

This should become (much) better with experience

– Parameter tuning: waiting long for each index build

Some problems with built-in functions … see slide 5

– Master solutions for ES1 would have been nice

Always available in the course SVN under /solutions

– Feedback from the tutors very much appreciated

– In Python, 4-space indent + 80-char limit is annoying

I agree, but it's absolutely standard in Python world

3

Experiences with ES2 2/4

 Results

– Standard BM25 parameters gave sub-optimal results

Smaller b worked better (less penalty for longer docs)

Smaller k worked better (less boost for larger tf)

– Boosting popular documents helped a bit

– Boosting matches in title helped a bit

– Boost matches of most or all query words helped a bit

– Best results: P@3 ≈ 60%, P@R ≈ 40%, MAP ≈ 40%

The last two results are typical: it's extremely hard to
get most or even all relevant documents at the top

For better P@3, sth like synonyms or query logs needed

4

Experiences with ES2 3/4

 Built-in functions / library functions

– Using them is OK, if and only if:

You are aware of the complexity of the function

You are aware of the complexity of the code using them

That complexity is ok for the task at hand

Not doing this is one of the most common reasons
for performance leaks in software

5

Experiences with ES2 4/4

 Built-in functions / library functions

– Example 1: merging two lists by concatenating them and
then sorting the concatenated list

Takes time n · log n, versus linear time for "zipper" alg

– Example 2: use "in" or "find" to locate an element in a
list, and doing this n times

Each call to "in" or "find" uses linear time, which gives
quadratic time overall  terrible running time

– Example 3: use std::set_intersection to implement a
linear-time intersect

Ok, provided that you convinced yourself that this works
only on sorted lists and runs in linear time

6

List Intersection 1/4

 Motivation (recap)

– In Lectures 1 & 2 we have merged the inverted lists

So that we also have a chance to find relevant docs
that do not contain all of the query words

– For efficiency reasons, many search engines only return
results which contain all the query words

Apache's Lucene, the most widely used open-source
search engine, supports intersect (AND) and merge (OR)

In most applications, intersect is used by default

– Today we will focus on efficiency and therefore on list
intersection

7

List Intersection 2/4

 Time measurement

– There can be significant variation, for example due to:

Other jobs running on your machine

The Java garbage collector running unpredictably

Data is partly in disk cache / L1-cache / TBL cache

– Therefore, always repeat your time measurements, and
take the average over all these

For ES3, repeat 10 times for each measurement

Note: repetition itself can also distort the truth because
of caching effects ... but not an issue for us today

8

List Intersection 3/4

 Time measurement in Java

– For millisecond resolution

long time1 = System.currentTimeMillis();
// whatever code you want to time
long time2 = System.currentTimeMillis();
long millis = time2 – time1;

– For microsecond resolution

long time1 = System.nanoTime();
// whatever code you want to time
long time2 = System.nanoTime();
long micros = (time2 – time1) / 1000;

9

List Intersection 4/4

 Time measurement in C++

– For millisecond resolution (C-Style) #include <time.h>

clock_t time1 = clock();
// whatever code you want to time
clock_t time2 = clock();
size_t millis = 1000 * (time2 – time1) / CLOCKS_PER_SEC;

– For microsecond resolution (C++11) #include <chrono>

auto time1 = high_resolution_clock::now();
// whatever code you want to time
auto time2 = high_resolution_clock::now();
size_t micros = duration_cast<microseconds>(…).count();

10

Non-algorithmic improvements 1/3

 Native arrays

– Java: ArrayList much worse than native [] array

Elements of an ArrayList cannot be basic data types
(e.g. int), but have to be objects (e.g. Integer)

This causes inefficient byte code / machine code

– C++: std::vector is as good as [] with option –O3

Elements of an std::vector can be basic data types
as well as objects

Due to C++'s templating mechanism, machine code
for std::vector<int> is almost the same as for int[]

11

Non-algorithmic improvements 2/3

 Predictable branches

– Branches = all conditional parts in your code

In particular, if … then … else parts

– Modern processors do pipelining = speculative execution
of future instructions before the current ones are done

– For conditional parts they have to guess the outcome

– So good to minimize amount of conditional parts

12

Non-algorithmic improvements 3/3

 Sentinels

– Special elements to avoid testing for index out of bound

Less code + further reduction in number of branches

– For list intersection: id ∞ at the end of both lists

For Java, take: Integer.MAX_VALUE

For C++, take: std::numeric_limits<int>::max()

13

Algorithmic improvements 1/8

 Preliminaries

– We have to two lists, which we want to intersect

– Let A be the smaller list, with k elements

– Let B be the longer list, with n elements

List intersection is commutative, so we can always
assume that the first list is A, and the second is B

14

Algorithmic improvements 2/8

 Binary search in the longer list

– Search each element from A in B, using binary search

– This has time complexity Θ(k · log n)

Good for small k … but for k = Θ(n) this is Θ(n · log n),
and hence slower than the "zipper"-style linear intersect

15

Algorithmic improvements 3/8

 Binary search in remainder of longer list

– Time complexity in the best case Θ(k + log n)

First element from A at the end of list B

– Time complexity in the worst case Θ(k · log n)

All elements of A at the beginning of list B

– Time complexity in the "typical" case Θ(k · log n)

Elements of A "evenly distributed" over list B

16

Algorithmic improvements 4/8

 Galloping search

– Goal: when elements A[i] and A[i+1] are located at
positions j1 and j2 in B, then, with d:= j2 – j1 ("gap"):

spend only time Θ(log d) to locate element A[i+1]

– Idea: first do an exponential search, to get an upper
bound on the range, then a binary search as before

17

Algorithmic improvements 5/8

 Galloping search, time complexity

– Let j1, ..., jk the positions of the elements of A in B

– Let di = ji – ji-1 for i > 1 and di = 1 (the "gaps")

Note that Σi di ≤ n = the number of elements in B

– Then the time complexity is O(Σi log di)

Not a nice formula, so let's find the maximum value,
independent of the particular d1, …, dk

– Lemma: Σi log di is maximized when all di = n / k

– Galloping search therefore takes time O(k · log (1 + n/k))

18

Algorithmic improvements 6/8

 Proof of Lemma … max Σi log di under constraint Σi di ≤ n

– This is an instance of Lagrangian optimization:

1. Write constraint as equation: Σi di – n' = 0 … n' < n

2. Define L(d1, …, dk, λ) = Σi log di + λ · (Σi di – n')

3. Set partial derivatives = 0 to find all local optima
and check the objective function at the borders

19

Algorithmic improvements 7/8

 Comparison-based lower bound

– Recall the lower-bound for comparison-based sorting

There are n! possible outputs, we have to differentiate
between all of them, and only two choices per step

Hence #steps required ≥ log2 (n!) = Ω(n · log n)

– We can use a similar argument for intersection / union:

There are n+k over k ways how the k elements from
A can be placed within the n elements from B, …

Hence #steps required ≥ log2 (n/k)k = k · log2 (n/k)

Galloping search is hence asymptotically optimal

20

Algorithmic improvements 8/8

 Skip Pointers

– Idea: potentially skip large parts of longer list B

– Skip pointer = special element in list B that points to
an element B[j] further to the right

When intersecting, follow pointer if current A[i] ≥ B[j]

Placement of skip pointers is heuristic … for ES3 you
can investigate good placements experimentally

– Advantage: very simple to implement

In particular, simpler than galloping search and thus
often more effective in practice, even if not "optimal"

21

References

 Textbook

Section 2.3: Faster intersection with skip pointers

 Literature

A simple algorithm for merging two linearly ordered sets

F.K. Hwang and S. Lin SICOMP 1(1):31–39, 1980

A fast set intersection algorithm for sorted sequences

R. Baeza-Yates CPM, LNCS 3109, 31–39, 2004

 Wikipedia

http://en.wikipedia.org/wiki/Lagrange_multiplier

22

