Information Retrieval
WS 2015 / 2016

Lecture 3, Tuesday November 3rd, 2015
(Efficient List Intersection)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg
Overview of this lecture

Organizational
- Your experiences with ES 2
- Using built-in functions

Contents
- List Intersection
- Non-algorithmic improvements
- Algorithmic improvements

Exercise Sheet 3: implement list intersection and make it as fast as possible on a small benchmark we have prepared
Experiences with ES2 1/4

■ Summary / excerpts

– Time-intensive for many, mainly due to debugging
 This should become (much) better with experience
– Parameter tuning: waiting long for each index build
 Some problems with built-in functions ... see slide 5
– Master solutions for ES1 would have been nice
 Always available in the course SVN under /solutions
– Feedback from the tutors very much appreciated
– In Python, 4-space indent + 80-char limit is annoying
 I agree, but it's absolutely standard in Python world
Experiences with ES2 2/4

■ Results

- Standard BM25 parameters gave sub-optimal results
 Smaller b worked better (less penalty for longer docs)
 Smaller k worked better (less boost for larger tf)
- Boosting popular documents helped a bit
- Boosting matches in title helped a bit
- Boost matches of most or all query words helped a bit
- Best results: $P@3 \approx 60\%, P@R \approx 40\%, MAP \approx 40\%$

 The last two results are typical: it's extremely hard to get most or even all relevant documents at the top
 For better $P@3$, sth like synonyms or query logs needed
Experiences with ES2 3/4

- Built-in functions / library functions

 - Using them is OK, if and only if:

 You are aware of the complexity of the function
 You are aware of the complexity of the code using them
 That complexity is ok for the task at hand
 Not doing this is one of the most common reasons for performance leaks in software
Experiences with ES2 4/4

- **Built-in functions / library functions**
 - Example 1: merging two lists by concatenating them and then sorting the concatenated list

 Takes time \(n \cdot \log n \), versus linear time for "zipper" alg
 - Example 2: use "in" or "find" to locate an element in a list, and doing this \(n \) times

 Each call to "in" or "find" uses linear time, which gives quadratic time overall → terrible running time
 - Example 3: use `std::set_intersection` to implement a linear-time intersect

 Ok, provided that you convinced yourself that this works only on sorted lists and runs in linear time
List Intersection 1/4

- Motivation (recap)
 - In Lectures 1 & 2 we have merged the inverted lists
 So that we also have a chance to find relevant docs that do not contain all of the query words
 - For efficiency reasons, many search engines only return results which contain all the query words
 Apache's Lucene, the most widely used open-source search engine, supports intersect (AND) and merge (OR)
 In most applications, intersect is used by default
 - Today we will focus on efficiency and therefore on list intersection
Time measurement

- There can be significant variation, for example due to:

 Other jobs running on your machine

 The Java garbage collector running unpredictably

 Data is partly in disk cache / L1-cache / TBL cache

- Therefore, always repeat your time measurements, and take the average over all these

For ES3, repeat **10 times** for each measurement

Note: repetition itself can also distort the truth because of caching effects ... but not an issue for us today
Time measurement in **Java**

- For **milli**second resolution

  ```java
  long time1 = System.currentTimeMillis();
  // whatever code you want to time
  long time2 = System.currentTimeMillis();
  long millis = time2 - time1;
  ```

- For **micro**second resolution

  ```java
  long time1 = System.nanoTime();
  // whatever code you want to time
  long time2 = System.nanoTime();
  long micros = (time2 - time1) / 1000;
  ```
Time measurement in C++

- For **milli**second resolution (C-Style)
  ```
  #include <time.h>
  
  clock_t time1 = clock();
  // whatever code you want to time
  clock_t time2 = clock();
  size_t millis = 1000 * (time2 - time1) / CLOCKS_PER_SEC;
  ```

- For **micro**second resolution (C++11)
  ```
  #include <chrono>
  
  auto time1 = high_resolution_clock::now();
  // whatever code you want to time
  auto time2 = high_resolution_clock::now();
  size_t micros = duration_cast<microseconds>(...).count();
  ```
Non-algorithmic improvements 1/3

Native arrays

- **Java**: `ArrayList` much worse than native `[]` array
 Elements of an `ArrayList` cannot be basic data types (e.g. `int`), but have to be objects (e.g. `Integer`)
 This causes inefficient byte code / machine code

- **C++**: `std::vector` is as good as `[]` with option `-O3`
 Elements of an `std::vector` can be basic data types as well as objects
 Due to C++'s templating mechanism, machine code for `std::vector<int>` is almost the same as for `int[]`
Non-algorithmic improvements 2/3

- Predictable branches
 - Branches = all conditional parts in your code
 - In particular, \texttt{if ... then ... else} parts
 - Modern processors do pipelining = speculative execution of future instructions before the current ones are done
 - For conditional parts they have to guess the outcome
 - So good to \texttt{minimize} amount of conditional parts
Non-algorithmic improvements 3/3

- **Sentinels**
 - Special elements to avoid testing for index out of bound
 - Less code + further reduction in number of branches
 - For list intersection: id ∞ at the end of both lists
 - For Java, take: `Integer.MAX_VALUE`
 - For C++, take: `std::numeric_limits<int>::max()`
Preliminaries

- We have to two lists, which we want to intersect
- Let \(A \) be the smaller list, with \(k \) elements
- Let \(B \) be the longer list, with \(n \) elements

List intersection is commutative, so we can always assume that the first list is \(A \), and the second is \(B \).
Algorithmic improvements 2/8

- Binary search in the longer list
 - Search each element from A in B, using binary search
 - This has time complexity $\Theta(k \cdot \log n)$

 Good for small k ... but for $k = \Theta(n)$ this is $\Theta(n \cdot \log n)$, and hence slower than the "zipper"-style linear intersect
Algorithmic improvements 3/8

- Binary search in remainder of longer list
 - Time complexity in the best case $\Theta(k + \log n)$
 First element from A at the end of list B
 - Time complexity in the worst case $\Theta(k \cdot \log n)$
 All elements of A at the beginning of list B
 - Time complexity in the "typical" case $\Theta(k \cdot \log n)$
 Elements of A "evenly distributed" over list B
Galloping search

- **Goal**: when elements $A[i]$ and $A[i+1]$ are located at positions j_1 and j_2 in B, then, with $d := j_2 - j_1$ ("gap"):

 spend only time $\Theta(\log d)$ to locate element $A[i+1]$

- **Idea**: first do an exponential search, to get an upper bound on the range, then a binary search as before
Galloping search, time complexity

- Let j_1, \ldots, j_k the positions of the elements of A in B
- Let $d_i = j_i - j_{i-1}$ for $i > 1$ and $d_1 = 1$ (the "gaps")

 Note that $\Sigma_i d_i \leq n = \text{the number of elements in } B$

- Then the time complexity is $O(\Sigma_i \log d_i)$

 Not a nice formula, so let's find the maximum value, independent of the particular d_1, \ldots, d_k

- Lemma: $\Sigma_i \log d_i$ is maximized when all $d_i = n / k$

- Galloping search therefore takes time $O(k \cdot \log (1 + n/k))$

\[\text{This is always } O(n) \]
Proof of Lemma ... max \(\sum_i \log d_i \) under constraint \(\sum_i d_i \leq n \)

- This is an instance of \textbf{Lagrangian optimization}:

1. Write constraint as equation: \(\sum_i d_i - n' = 0 \) \(\ldots \) \(n' < n \)
2. Define \(L(d_1, \ldots, d_k, \lambda) = \sum_i \log d_i + \lambda \cdot (\sum_i d_i - n') \)
3. Set partial derivatives = 0 to find all local optima and check the objective function at the borders
Comparison-based lower bound

- Recall the lower-bound for comparison-based sorting

 There are $n!$ possible outputs, we have to differentiate between all of them, and only two choices per step

 Hence steps required $\geq \log_2(n!) = \Omega(n \cdot \log n)$

- We can use a similar argument for intersection / union:

 There are $\binom{n+k}{k}$ ways how the k elements from A can be placed within the n elements from B, ...

 Hence steps required $\geq \log_2 \left(\frac{n}{k}\right)^k = k \cdot \log_2 \left(\frac{n}{k}\right)$

 Galloping search is hence asymptotically optimal
Algorithmic improvements 8/8

- **Skip Pointers**
 - **Idea:** potentially skip large parts of longer list B
 - Skip pointer = special element in list B that points to an element $B[j]$ further to the right
 - When intersecting, follow pointer if current $A[i] \geq B[j]$
 - Placement of skip pointers is heuristic ... for ES3 you can investigate good placements experimentally
 - Advantage: **very simple** to implement
 - In particular, simpler than galloping search and thus often more effective in practice, even if not "optimal"
References

Textbook

Section 2.3: Faster intersection with skip pointers

Literature

A simple algorithm for merging two linearly ordered sets

A fast set intersection algorithm for sorted sequences
R. Baeza-Yates CPM, LNCS 3109, 31–39, 2004

Wikipedia

http://en.wikipedia.org/wiki/Lagrange_multiplier