
Information Retrieval
WS 2015 / 2016

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 2, Tuesday October 27th, 2015
(Ranking, Evaluation)

Overview of this lecture

 Organizational
– Your experiences with ES1 Inverted index

– Choice of language Python, Java, C++

 Contents
– Ranking tf.idf and BM25

– Evaluation Ground truth, Precision, …

– Exercise Sheet #2: implement BM25, tune your
ranking, and then evaluate on a small benchmark

There will be small competition (table on the Wiki)

2

Experiences with ES1 1/3

 Summary / excerpts

– Nice and interesting exercise

– Easy for those with sufficient programming experience

– More work than expected for those out of practice

"First I thought the task is very easy and I'm finished
soon, but then I got stuck in small coding details."

Don't worry, this will get much better over the course

– Getting used to Daphne and SVN took some time

But many of you are used to it already

3

Experiences with ES1 2/3

 Results

– Queries with only specific words work very well

matrix , hobbit , edward scissorhands , …

– Already one unspecific word often leads to bad results

the matrix , tom hanks , lord of the rings , …

– Several of you implemented cool additional features

Highlighting, better ranking, command history (wow),
autocompletion (wow wow wow), …

4

Experiences with ES1 3/3

 Choice of programming language

– Let me briefly repeat what I said in Lecture 1

Python will be the least work

Feel absolutely free to also use Java or C++, but be
prepared for more work

For ES1, we provided equivalent code for all three
languages, to give you a working example for each

We will not do that for future lectures, except:

For lectures about efficiency, we will provide code in
both Java and C++, but not in Python

5

Ranking 1/14

 Motivation

– Queries often return many hits

– Typically more than one wants to (or even can) look at

For web search: often millions of documents

But even for less hits a proper ranking is key to usability

– So we want to have the most "relevant" hits first

– Problem: how to measure what is how "relevant"

6

Ranking 2/14

 Basic Idea

– In the inverted lists, for each doc id also have a score

uni 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– While merging, aggregate the scores, then sort by score

MERGED 17 0.5 , 23 0.1 , 34 0.8 , 53 0.3 , 97 0.3 , 127 1.5

SORTED 127 1.5 , 34 0.8 , 17 0.5 , 53 0.3 , 97 0.3 , 23 0.1

– The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also
contain more information, e.g. the position of a word

7

Ranking 3/14

 Getting the top-k results

– A full sort of the result list takes time Θ(n · log n),
where n is the number of postings in the list

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest
elements, for a given k

Can be computed in time Θ(n + k · log k)

k rounds of HeapSort yield time Θ(n + k · log n)

For constant k these are both Θ(n)

For ES2, you can ignore this issue

8

Ranking 4/14

 Meaningful scores

– How do we precompute good scores

uni 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

– Goal: the score for the posting for doc Di in the inverted
list for word w should reflect the relevance of w in Di

In particular, the larger the score, the more relevant

– Problem: relevance is somewhat subjective

But it has to be done somehow anyway !

9

Ranking 5/14

 Term frequency (tf)

– The number of times a word occurs in a document

– Problem: some words are frequent in many documents,
regardless of the content

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

A word like "of" should not count much for relevance

Many of you observed that already, working on ES1

10

Ranking 6/14

 Document frequency (df)

– The number of documents containing a particular word

dfuniversity = 16.384 , dfof = 524.288 , dffreiburg = 1.024

For simplicity, number are powers of 2, see below why

– Inverse document frequency (idf)

idf = log2 (N / df) N = total number of documents

For the example df scores above and N = 1.048.576 = 220

idfuniversity = 6 , idfof = 1, idffreiburg = 10

Understand: without the log2 , small differences in df would
have too much of an effect ; why exactly log2  later slide

11

Ranking 7/14

 Combining the two (tf.idf)

– Reconsider our earlier tf only example

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

– Now combined with idf scores from previous slide

university … , 57 30 , … … … , 123 12 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 30 , … … … , 123 10 , …

SCORE SUM … , 57 74 , … … … , 123 45 , …

12

Ranking 8/14

 Problems with tf.idf in practice

– The idf part is fine, but the tf part has several problems

– Let w be a word, and D1 and D2 be two documents

– Problem 1: assume that D1 is longer than D2

Then tf for w in D1 tends to be larger then tf for w in D2,
because D1 is longer, not because it's more "about" w

– Problem 2: assume that D1 and D2 have the same length,
and that the tf of w in D1 is twice the tf of w in D2

Then it is reasonable to assume that D1 is more "about" w
than D2, but just a little more, and not twice more

13

Ranking 9/14

 The BM25 (best match) formula

– This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf)

tf = term frequency, DL = document length, AVDL =
average document length

– Standard setting for BM25: k = 1.75 and b = 0.75

Binary: k = 0, b = 0; Normal tf.idf: k = ∞, b = 0

14

Ranking 10/14

15

 Plausibility argument for BM25, part 1

– Start with the simple formula tf · idf

– Replace tf by tf* such that the following properties hold:

tf* = 0 if and only if tf = 0

tf* increases as tf increases

tf*  some limit as tf  ∞

– The simplest formula with these properties is

tf* = tf · (k + 1) / (k + tf)

Ranking 11/14

16

 Plausibility argument for BM25, part 2

– So far, we have tf* = tf · (k + 1) / (k + tf)

– Normalize by the length of the document

full normalization: α = DL / AVDL … too extreme

some normalization: α = (1 – b) + b · DL / AVDL

replace tf by tf / α

– This gives us tf* = tf / α	· (k + 1) / (k + tf / α)

– And hence tf* = tf · (k + 1) / (k · α	+ tf)

Lots of "theory" behind this formula, but to me not really
more convincing than these simple plausibility arguments

Ranking 12/14

 Implementation advice

– First compute the inverted lists with tf scores

You already did that (implicitly or explicitly) for ES1

– Along with that compute the document length (DL) for each
document, and the average document length (AVDL)

– Make a second pass over the inverted lists and replace the
tf scores by tf* · idf scores

tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf) · log2 (N / df)

Note that the df of a word is just the length (number of
postings) in its inverted list

17

Ranking 13/14

 Further refinements

– For ES2, play around with the BM25 parameters k and b

– Boost results that match each query word at least once

Warning: when you restrict your results to such matches,
you might miss some relevant results

For example: steven spielberg movies

– Somehow take the popularity of a movie into account

In the file on the Wiki, movies are sorted by popularity

Popularity scores also have a Zipf distribution, so you might
take ~ N-α as popularity score for the N-th movie in the list

– Anything else that comes to your mind and might help …

18

Ranking 14/14

 Advanced methods

– There is a multitude of other sources / approaches for
improving the quality of the ranking, for example:

Using query logs and click-through data

Who searches what and clicked on what … main pillar
for the result quality of big search engines like Google

Learning to rank

Using machine learning (more about that in a later
lecture) to find the best parameter setting

19

Evaluation 1/6

 Ground truth

– For a given query, the ids of all documents relevant for
that query

Query: matrix movies

Relevant: 10, 582, 877, 10003

– For ES2, we have built a ground truth for 10 queries

That was a lot of work, mostly Björn's, thanks !

Building a good and large enough ground truth is a
common (and time-consuming) part in research in IR

20

Evaluation 2/6

 Precision (P@k)

– The P@k for a given result list for a given query is the
percentage of relevant documents among the top-k

Query: matrix movies

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, 37, …

P@1: 1/1 = 100%

P@2: 1/2 = 50%

P@3: 1/3 = 33%

P@4: 2/4 = 50%

P@5: 3/5 = 60%
21

Evaluation 3/6

 Average Precision (AP)

– Let R1, …, Rk be the sorted list of positions of the
relevant document in the result list of a given query

– Then AP is the average of the k P@Ri values

Query: matrix movies

Relevant: 10, 582, 877, 10003

Result list: 582, 17, 5666, 10003, 10, …, 877

R1, …, R4: 1, 4, 5, 40

P@R1, …, P@R4: 100%, 50%, 60%, 10%

AP: 55%

Note: for docs not in result list, just take P@Ri = 0
22

Evaluation 4/6

 Mean Precisions (MP@k, MP@R, MAP)

– Given a benchmark with several queries + ground truth

– Then one can capture the quality of a system by taking
the mean (average) of a given measure over all queries

MP@k = mean of the P@k values over all queries

MP@R = mean of the P@R values over all queries

MAP = mean of the AP values over all queries

These are very common measures, which you will
find in a lot of research papers

23

Evaluation 5/6

 Other measures

– There is a BIG variety of other evaluation measures, e.g.

– nDCG = normalized discounted cumulative growth

Takes into account that documents can have varying
degrees of relevance, e.g. primary and secondary

Gives credit if primary is ranked before secondary

– BPref = binary relevance … preference relation

Takes into accounts that some documents are unjudged

This is a frequent problem in benchmarks for huge text
corpora, where complete judgment is impossible

E.g. all relevant document for "tom hanks" on the web

24

Evaluation 6/6

 Overfitting

– Tuning parameters / methods to achieve good results on
a given benchmark is called overfitting

In an extreme case: for each query from the benchmark,
output the list of relevant docs from the ground truth

– In a realistic environment (real search engine or com-
petition), one is given a training set for development

The actual evaluation is on a test set, which must not
be used / was not available during development

For ES2, do the development / tuning on some queries
on your choice, then evaluate without further changes

25

References

 In the Manning/Raghavan/Schütze textbook
Section 6: Scoring and Term Weighting

Section 8: Evaluation in Information Retrieval

 Relevant Papers
Probabilistic Relevance: BM25 and Beyond FnTIR 2009

Test Collection Based Evaluation of IR Systems FnTIR 2010

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Okapi_BM25

https://en.wikipedia.org/wiki/Information_retrieval
#Performance_and_correctness_measures

26

