Information Retrieval
WS 2015 / 2016

Lecture 2, Tuesday October 27t, 2015
(Ranking, Evaluation)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational

— Your experiences with ES1 Inverted index

— Choice of language Python, Java, C++
m Contents

— Ranking tf.idf and BM25

— Evaluation Ground truth, Precision, ...

— Exercise Sheet #2: implement BM25, tune your
ranking, and then evaluate on a small benchmark

There will be small competition (table on the Wiki)

Experiences with ES1 1/3

m Summary / excerpts
— Nice and interesting exercise
— Easy for those with sufficient programming experience
— More work than expected for those out of practice

"First I thought the task is very easy and I'm finished
soon, but then I got stuck in small coding details."

Don't worry, this will get much better over the course
— Getting used to Daphne and SVN took some time

But many of you are used to it already

Experiences with ES1 2/3

m Results
— Queries with only specific words work very well
matrix , hobbit , edward scissorhands, ...
— Already one unspecific word often leads to bad results
the matrix , tom hanks , lord of the rings, ...
— Several of you implemented cool additional features

Highlighting, better ranking, command history (wow),
autocompletion (wow wow wow), ...

Experiences with ES1 3/3

m Choice of programming language
— Let me briefly repeat what I said in Lecture 1
Python will be the least work

Feel absolutely free to also use Java or C++, but be
prepared for more work

For ES1, we provided equivalent code for all three
languages, to give you a working example for each

We will not do that for future lectures, except:

For lectures about efficiency, we will provide code in
both Java and C++, but not in Python

Ranking 1/14

m Motivation
— Queries often return many hits
— Typically more than one wants to (or even can) look at
For web search: often millions of documents
But even for less hits a proper ranking is key to usability
— So we want to have the most "relevant” hits first

— Problem: how to measure what is how "relevant”

Ranking 2/14

m Basic Idea

— In the inverted lists, for each doc id also have a score
uni 170.5,530.2,970.3,1270.8
freibburg 230.1,340.8,530.1,1270.7

— While merging, aggregate the scores, then sort by score

MERGED 170.5,230.1,340.8,530.3,970.3,1271.5
SORTED 1271.5,340.8,170.5,530.3,970.3,230.1
— The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also
contain more information, e.qg. the position of a word

Ranking 3/14

m Getting the top-k results

— A full sort of the result list takes time ©(n - log n),
where n is the number of postings in the list

— Typically only the top-k hits need to be displayed

— Then a partial sort is sufficient: get the k largest
elements, for a given k

Can be computed in time ©(n + k - log k)
k rounds of HeapSort yield time ©(n + k - log n)
For constant k these are both ©(n)

For ES2, you can ignore this issue

Ranking 4/14

m Meaningful scores
— How do we precompute good scores
uni 170.5,530.2,970.3, 127 0.8
freiburg 230.1,340.8,530.1,1270.7

— Goal: the score for the posting for doc D; in the inverted
list for word w should reflect the relevance of w in D,

In particular, the larger the score, the more relevant
— Problem: relevance is somewhat subjective

But it has to be done somehow anyway !

10

Ranking 5/14

m Term frequency (tf)
— The number of times a word occurs in a document

— Problem: some words are frequent in many documents,
regardless of the content

university .., 97 5,...... , 123 2, ...
of .., 57 14, , 123 23, ..
freiburg ., 57 3, , 123 1, ..
SCORE SUM .., 97 22, , 123 26, ...

A word like "of" should not count much for relevance

Many of you observed that already, working on ES1

11

Ranking 6/14

m Document frequency (df)

— The number of documents containing a particular word
df niversity = 16.384 , df ¢ = 524.288 , dff g = 1.024
For simplicity, number are powers of 2, see below why

— Inverse document frequency (idf)
idf = log, (N / df) N = total number of documents
For the example df scores above and N = 1.048.576 = 220
idf niversity = 6, 1dfe = 1, idfq g = 10

Understand: without the log, , small differences in df would
have too much of an effect ; why exactly log, — later slide

12

Ranking 7/14

m Combining the two (tf.idf)

— Reconsider our earlier tf only example

university .., 97 5,...... , 123 2, ...
of .., 57 14, , 123 23, ..
freiburg .., 57 3,...... , 123 1, ..
SCORE SUM ..., 57 22, , 123 26, ...
— Now combined with idf scores from previous slide
university .., 57 30, , 123 12, ...
of .., 57 14, , 123 23, ..
freiburg ..., 57 30, , 123 10, ..
SCORE SUM ..., 57 74, , 123 45, ...

13

Ranking 8/14

m Problems with tf.idf in practice
— The idf part is fine, but the tf part has several problems

— Let w be a word, and D, and D, be two documents

— Problem 1: assume that D, is longer than D,

Then tf for w in D, tends to be larger then tf for w in D,,
because D, is longer, not because it's more "about" w

— Problem 2: assume that D, and D, have the same length,
and that the tf of w in D, is twice the tf of w in D,

Then it is reasonable to assume that D is more "about” w
than D,, but just a little more, and not twice more

14

Ranking 9/14

m The BM25 (best match) formula

— This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* - log, (N / df), where
tf*=tF-(k+1)/(k - @+b DL/AVDL)+tf)

tf = term frequency, DL = document Iength AVDL =
average document length

— Standard setting for BM25: k= 1.75and b = 0.75
Binary: k =0, b =0; Normal tf.idf: k =00, b=0 = <=4

K= - (0+4) ¥ = 18- () [(% - 1)
o+ (e L) (e
:i‘@ — \—/S =

2 DO

15

Ranking 10/14

m Plausibility argument for BM25, part 1
— Start with the simple formula tf - idf

— Replace tf by tf* such that the following properties hold:
tF* = 0 if and only if tf = 0 B=-0 = K" =0 g

N P

tf* increases as tf increases Q= @A [LA 57) =
>

tf* — some limit as tf — oo Bome T

— The simplest formula with these properties is
t*=tF-(k+ 1)/ (k + tf)

=0 = oL =1 PO ANOIVVWA -

o= = AL=DL/AVDL Quik
LOONGLD o

Ranking 11/14

m Plausibility argument for BM25, part 2

k+ 1)/ (k + tf)

— Normalize by the length of the document

/ AVDL ... too extreme

— So far, we have tf* = tf -

o full normalization: o =
» some normalization: a« = (1 —-b) + b - DL / AVDL
» replace tf by tf / «

— Thisgivesustf* =tf fa-(k+ 1)/ (k + tf / o)

— And hence tf* =tf- (k + 1) / (k - o + tf)

Lots of "theory" behind this formula, but to me not really
more convincing than these simple plausibility arguments

17

Ranking 12/14

m Implementation advice

— First compute the inverted lists with tf scores

You already did that (implicitly or explicitly) for ES1

— Along with that compute the document length (DL) for each
document, and the average document length (AVDL)

— Make a second pass over the inverted lists and replace the
tf scores by tf* - idf scores

tf-(k+1)/(k -(1—b+b-DL/AVDL) + tf) - log, (N / df)

Note that the df of a word is just the length (number of
postings) in its inverted list

18

Ranking 13/14

m Further refinements
— For ES2, play around with the BM25 parameters k and b
— Boost results that match each query word at least once

Warning: when you restrict your results to such matches,
you might miss some relevant results

For example: steven spielberg movies
— Somehow take the popularity of a movie into account
In the file on the Wiki, movies are sorted by popularity

Popularity scores also have a Zipf distribution, so you might
take ~ N™® as popularity score for the N-th movie in the list

— Anything else that comes to your mind and might help ...

19

Ranking 14/14

m Advanced methods

— There is a multitude of other sources / approaches for
improving the quality of the ranking, for example:

Using query logs and click-through data

Who searches what and clicked on what ... main pillar
for the result quality of big search engines like Google

Learning to rank

Using machine learning (more about that in a later
lecture) to find the best parameter setting

20

Evaluation 1/6 Rt ES2 | neon

AN D M

m Ground truth

— For a given query, the ids of all documents relevant for

that query
Query: matrix movie
Relevant: 10, 582, 877, 10003

— For ES2, we have built a ground truth for 10 queries
That was a lot of work, mostly Bjorn's, thanks !

Building a good and large enough ground truth is a
common (and time-consuming) part in research in IR

7

=

Evaluation 2/6 "&¢ =rfe@= -
T = T aGoont T -
m Precision (P@Kk)

— The P@k for a given result list for a given query is the
percentage of relevant documents among the top-k

Query: matrix movies
Relevant: 10, 582, 877, 10003 e
ee. NI U2 el REL wel
Result list: 582, 17, 5666, 10003, 10, 37, ...
P@1: 1/1 = 100%
P@2: 1/2 = 50%
P@3: 1/3 = 33% ’
P@4: 2/4 = 50% SRRR Jov T Gty

P@5: 3/5 = 60%

22

Evaluation 3/6

m Average Precision (AP)

— Let Ry, ..., Ry be the sorted list of positions of the
relevant document in the result list of a given query

— Then AP is the average of the k P@Ri values

Query: matrix movies
Relevant: 10, 582, 877, 10003

neL DT D wEL REL N REL
Result list: 582, 17, 5666, 10003, 10, ..., 877

4. 2. 2. . & D).

Ry, ...y R4t 1,4,5,40
P@Ry, ..., P@R4: 100%, 50%, 60%, 10%
AP: 55%

Note: for docs not in result list, just take P@R; = 0

Evaluation 4/6

m Mean Precisions (MP@k, MP@R, MAP)

— Given a benchmark with several queries + ground truth

— Then one can capture the quality of a system by taking
the mean (average) of a given measure over all queries

MP@k = mean of the P@k values over all queries
MP@R = mean of the P@R values over all queries
MAP = mean of the AP values over all queries

These are very common measures, which you will
find in a lot of research papers

23

24

Evaluation 5/6

m Other measures
— There is a BIG variety of other evaluation measures, e.q.
— nDCG = normalized discounted cumulative growth

Takes into account that documents can have varying
degrees of relevance, e.g. primary and secondary

Gives credit if primary is ranked before secondary
— BPref = binary relevance ... preference relation
Takes into accounts that some documents are unjudged

This is a frequent problem in benchmarks for huge text
corpora, where complete judgment is impossible

E.g. all relevant document for "tom hanks" on the web

Evaluation 6/6

m Overfitting

— Tuning parameters / methods to achieve good results on
a given benchmark is called overfitting

In an extreme case: for each query from the benchmark,
output the list of relevant docs from the ground truth

— In a realistic environment (real search engine or com-
petition), one is given a training set for development

The actual evaluation is on a test set, which must not
be used / was not available during development

For ES2, do the development / tuning on some queries
on your choice, then evaluate without further changes

25

References

m In the Manning/Raghavan/Schitze textbook
Section 6: Scoring and Term Weighting
Section 8: Evaluation in Information Retrieval
m Relevant Papers
Probabilistic Relevance: BM25 and Beyond FnTIR 2009

Test Collection Based Evaluation of IR Systems FnTIR 2010
m Relevant Wikipedia articles

http://en.wikipedia.org/wiki/Okapi BM25

https://en.wikipedia.org/wiki/Information_retrieval
#Performance_and_correctness_measures

26

