Information Retrieval
WS 2015 / 2016

Lecture 1, Tuesday October 20th, 2015
(Introduction, Inverted Index, Zipf's Law)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg
Overview of this lecture

- **Organizational**
 - Contents of this course: demos + list of topics
 - Organization and style: lectures, exercises, tutorials
 - Credits: ECTS points + exam info
 - Coding Standards: valid throughout the course

- **Contents**
 - Keyword Search: inverted index, Zipf's law

 Exercise Sheet 1: implement keyword search using an inverted index on a collection of 200K movie descriptions
Three demos for starters

- **CompleteSearch** Search As You Type
 - Data: over 3M publication records from computer science
 - Features: suggestions, facets, lightning fast

- **Broccoli** Semantic Search
 - Data: Freebase (2B facts) + Wikipedia (300M sentences)
 - Features: search in facts + text, suggestions, fast

- **Aqqu** Question Answering
 - Data: Freebase (2B facts)
 - Features: free-form natural language questions
Contents of this Course 2/2

Research topics behind the demo you just saw

- Indexing
 needed for fast query times
- Ranking
 most relevant hits should come first
- Compression
 lots of data, store it efficiently
- Error-tolerant search
 errors in query or document
- Web app stuff
 JavaScript, AJAX, Cookies, UTF-8
- Machine learning
 solve classification tasks automatically
- Knowledge bases
 how to organize factual knowledge
- Evaluation
 argue that one system is better than another

You will learn about all that (and more) in this course
Organization and Style 1/5

- Organization of the lectures
 - Tuesday 16:15 – 17:45 h in room SR 01-013/019
 - 14 lectures altogether (last one on February 9)
 - No lecture on December 29 + January 5 + one other date
 - All lectures are recorded + online by Tuesday evening
 - Slides + Audio + Video ... Editing: Dennis Weggemann
 - You find all the course materials on our Wiki
 - Recordings, slides, code from the lecture, exercise sheets + specifications + design suggestions, master solutions, ...
 - Also in the SVN, subfolder /public (except for the recordings)
Organization of the exercises

- One sheet per week, altogether 13 sheets
- You have one week per sheet
 Until 2 hours before the next lecture = Tuesday 14:00 h
- You can work in groups of **at most two** people

If you want to work in a group, send an email to Axel Lehmann (lehmann@cs.uni-freiburg.de) with the name of your RZ accounts (initials + short number)

He will then create a joint folder in our SVN for you

The exercises are the most important part of the course
Organization and Style 3/5

- Organization of the Tutorials
 - There is a **forum** for questions of all kinds

 See the instructions on the back of Exercise Sheet 1

 Response times on the forum are fast, often I or one of the assistants will answer

 Assistants: Elmar Haußmann and Björn Buchhold

 - You will receive **feedback** for each your exercise sheets

 Usually by Friday after the submission deadline

 You will find the feedback in a file feedback-tutor.txt in your subfolder in our SVN
Organization and Style 4/5

Style of the lectures

- I will provide: basic definitions, examples, **live code**

The emphasis is on motivation + the basic ideas

 Working out the details is **your** job in the exercises

- Underlying theory wherever needed

 No more no less

- One topic per lecture + self contained

 We provide all the materials you need for the sheets and the exam ... the literature pointers at the end are optional
Style of the exercises

- Your task: understand the basic idea + implement it

 Implementation is great, because it makes you understand all the important details + a working implementation is proof that you did understand it

- Practically relevant tasks + real data + own experiments

 Usually the best motivation to work on something

 By doing experiments yourself, you will also get a feeling of what research in this area is like

- Some theoretical tasks

 But not too many
Amount of Work / ECTS points

- This course yields 6 ECTS points = costs 180 working hours

 Lectures (≈ 30 hours) + exercise sheets + exam preparation

- Time management options ES = Exercise Sheet

 A. 7-9 hours per ES, little exam prep. RECOMMENDED

 B. 5-6 hours per ES, much exam prep. MINIMUM

 C. 0 hours per ES, ??? exam prep. VERY BAD IDEA

Doing all the exercise sheets and understanding everything behind them is the perfect preparation for the exam
Exam

- There is a written exam in the end
 The date will be fixed in one of the last lectures
- There will be six tasks, out of which you can choose five
 See exams from last years on the Wiki
- More information about the exam in the last lecture
 We will look at some typical tasks + solve them together
Problem definition

- Given a collection of text documents ... e.g. the web
 For the exercise sheet: 200K movie descriptions
- Given a keyword query ... e.g. uni freiburg
 For the exercise sheet: any number of keywords
- Return all docs that contain at least one of the keywords
 For the exercise sheet: the more keyword matches in a record, the better

Sounds good, but you will see (when you work on the sheet) that this is not always a good idea
Keyword Search 2/10

- Issues / Refinements
 - Ordering / ranking of the results Lecture 2
 - Fast query processing Lecture 3
 - Space consumption Lecture 4
 - Find variations of the keywords Lecture 5
 - Search web application Lecture 6
 - More web stuff + UTF-8 Lecture 7
 - Synonyms Lecture 8

Today (Lecture 1), we start by doing the minimum that is necessary to get a first workable solution
Keyword Search 3/10

- Naive solution

 - Given a keyword query, iterate over all the documents, and identify those that match

 Similar to what the Unix/Linux grep command does

 - Actually not so bad for small text collections

 A modern computer can scan through 1 GB of text in about half a second

 But already for 100 GB it would be \(\approx 1 \) minute

 - Current web: \(\approx 50 \) billion pages / 2500 TB of text

 Source: www.worldwidewebsize.com ... assuming 50 KB / page
Keyword Search 4/10

- Inverted index
 - For each word, pre-compute and store the **sorted** list of ids of documents / records containing that word
 - `uni` 13, 57, 57, 114, 987, ...
 - `freiburg` 5, 23, 23, 23, 57, 257, ...
 - These lists are called **inverted lists**
 - For now, the same id can occur **multiple** times in the same list if the record contains the word multiple times
 - Optimization: store pairs like (57, 2) or (23, 3)
 - For the exercise sheet you can do it either way
Keyword Search 5/10

- Query processing, one keyword
 - The inverted list for that keyword already gives us what we want (all docs containing that keyword)

freiburg 5, 23, 23, 23, 57, 257, ...
Query processing, two keywords

Let L_1 and L_2 be the inverted lists of the two keywords.

We obtain the sorted list of ids for the matches of any of the two keywords by merging L_1 and L_2.

For sorted lists, this can be done in linear time.

$\text{uni} \quad 13, 57, 57, 114, 987, ...$

$\text{freiburg} \quad 5, 23, 23, 23, 57, 257, ...$

$\Rightarrow \quad \text{R}$
Keyword Search 7/10

- Query processing, k > 2 keywords
 - Let $L_1, L_2, ..., L_k$ be the inverted lists of the keywords
 - We can do a sequence of pairwise merges:
 - Merge L_1 and L_2 → L_{12}
 - Merge L_{12} and L_3 → L_{123} ... and so on
 - Possible optimizations (not needed for the exercise sheet)
 - Order the lists such that $|L_1| \leq |L_2| \leq ... \leq |L_k|$
 - Then the lengths of intermediate results is minimized
 - Or: compute a k-way merge in time $O(k \cdot \sum |L_i|)$
 - More about this in a later lecture
Breaking the text into words (tokenization)

- Conceptually simple: just define a set of characters that belong to words and a set of characters that don't.

 Words are then maximal sequences of word characters.

 For Exercise Sheet 1, you can simply consider a-z and A-Z as word characters, all others as separators.

- In reality it's a bit more complicated:

 高見 順：娘よりの聞書きにつき誤引用の可能性あり
 Donaudampfschifffahrtskapitänsgesellschaftsvorsitzender
 Æ–sterreichische GemÄ¼sebrÄ¼he mit KnÄ¶deln

 More about UTF-8 and language stuff in Lecture 7
Construction of an inverted index

- Store in a **map** from strings (words) to arrays of ints (id)

- Construction algorithm:

 Iterate over all records, numbering them 1, 2, 3, ...

 For each record, iterate over all the contained words

 For each word occurrence, add id of current record to respective inverted list (create it, if new word)

Let's code this together now!
Zipf's Law

- Let F_n be the frequency of the n-th most frequent word
 Frequency = total number of occurrences in all record
- Let us plot n on the x-axis and F_n on the y-axis
 Observation: looks like a hyperbola
- It turns out that $F_n \sim 1 / n^\alpha$ for some constant α
 Empirical observation, true for most texts and languages
 After George Kingsley Zipf, 1902 – 1950, American linguist
- Note: $F_n \sim 1 / n^\alpha$ implies $\log F_n \sim -\alpha \cdot \log n$
 We should hence see a (falling) line in the log-log plot
Coding Standards 1/2

Quick overview

- Write your code in Python, Java or C++
 - I will often (but not always) use Python in the lectures
- Follow the specifications in the TIP file, if available
- Follow our coding conventions at all times:
 - One non-trivial unit test for each non-trivial method
 - Adhere to our coding style + document each method
 - Use a standard build/make file + make sure everything runs through without errors on our build system

You find a detailed description on Exercise Sheet 1 … read it carefully, this is valid throughout the course
Daphne

- You find the links to all the relevant information and systems on your Daphne page

Just log in with your regular RZ account and password (your initials + a short number)
References

- Text book

 Introduction to Information Retrieval

 C. Manning, P. Raghavan, H. Schütze

 Available online under http://www.informationretrieval.org

 Good, up-to-date, comprehensive information on the basics

- Wikipedia articles relevant for this lecture

 Wikipedia articles on basic algorithms stuff are quite good

 However: still no good article on merging lists!