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Overview of this lecture

 Organizational

– Your results + experiences with Ex. Sheet 12 (Ontologies)

– The official evaluation of this course

 Hypothesis Testing

– How to determine whether an observed effect is
what is called statistically significant ?

– This is a must when the observed effect is small,
and the variation is large

– Specifically today: R(andomization)-Test, Z-test, T-test

– Exercise Sheet 13:  determine the statistical significance
of the difference between BM25 and TF-IDF on five queries
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Experiences with ES#12   (Ontologies)

 Summary / excerpts        last checked February 4, 15:30

– Liked the introduction to Ontologies & SPARQL

– Too much effort for parsing the SPARQL query (in C++)

Sorry, I forgot to say that Python would have been ok for
this exercise too, since efficiency was not the issue

– Constant values were not explained … settled on Forum
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Official course evaluation

 Instructions

– You received an email from EvaSys Admin on Thursday, 
January 30 with a link to an online evaluation form

– We are very interested in your feedback

– Please take your time for this

You will get 20 wonderful points !

– Please be honest and concrete

– The free text comments are most interesting for us

Please complete by Sunday, February 9

The evaluation is centralized this time, and will be closed 
after that date, and there is nothing we can do about that
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Hypothesis Testing   1/5

 Motivation

– Typical situation in research: compare the outcome
of two experiments

E.g. in the life sciences: health status for two groups of 
people, one taking a particular medication and one not

E.g. in computer science: the performance of two systems,
using different algorithms or different parameter settings

– The outcome of the experiments will be different

But even carrying out the same experiment twice will give 
different results because of random fluctuations

Key question: how to tell a "real" difference between the 
two experiments from mere random fluctuation
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Hypothesis Testing   2/5

 Example 1:  Prediction of coin tosses
– Ten predictions in a row, C = correct, W = wrong

CCCCCCCCCC        (all ten predictions are correct)

– Do we believe in this person's ability to predict?

 Hypothesis testing answers this as follows
– Null hypothesis H0 = the person cannot predict = is just 

making random guesses … mathematically:  Pr(C) = ½

– Compute the probability of the observed data, under the 
assumption that the null hypothesis H0 is true

Pr(all ten correct | H0) = 2-10 ≤ 0.001 = 0.1%

– We say that we can reject H0 with probability ≥ 99.9%

Thus very unlikely that this great prediction was mere chance
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Hypothesis Testing   3/5

 Example 1: continuation

– Let's assume, in a different series we get

CCCWCCCWCC         (8 correct, 2 wrong)

– What is now the probability that this is due to chance?

Note: we should not ask for the probability of exactly 8
correct guesses to happen; it makes more sense to ask 
for the prob. of 8 or more correct guesses to happen
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Hypothesis Testing   4/5

 General terminology

– We start with a hypothesis H e.g. ability to predict coin tosses

– Null hypothesis H0 = the opposite of H e.g. random guessing

– Statistical test: compute the probability p of the given
or more extreme data assuming that H0 is true

This probability p is called the p-value

If p is small enough, one says something like:

The outcome of the experiment is statistically significant
(for the hypothesis) with significance level p

In the life sciences, people are usually happy with p < 0.05
or p < 0.01
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Hypothesis Testing   5/5

 Example 2: two dice with unknown distribution

– Two dice A and B, four rolls each

A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Null hypothesis H0 = the two dice A and B are identical

– Given H0, what is the probability of observing A and B

– We will look at three well-known statistical tests

R-Test:  simple + makes no probabilistic assumptions

Z-Test: assume normal distribution with fixed variance

T-Test: like Z-test, but also model variance distribution
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R(andomization)-Test   1/3

 One of the simplest statistical tests

– Assume we have two series of measurements, A and B

– Null hypothesis = no difference between A and B

– Then we can assume that the measurements come from 
one experiment + assignment to either A or B is arbitrary

– The R-Test considers all 2n possible assignments of the n
measurements to either A or B

– For each assignment, compute the difference ∆μ of the 
means, and see if it is ≥ the ∆μ on the observed data

The fraction of assignments for which this is the case is 
the p-value according to the R-Test
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R(andomization)-Test   2/3

 Application to our dice example

A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Here are some of the 28 possible assignments of these 8
measurements to either A or B and the respective ∆μ

Note: we ignore the two assignments, where all 
measurements are assigned all to A or all to B, because 
we can't compute a meaningful mean difference then
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R(andomization)-Test   3/3

 Continuation of the example

– Let's write a program together to iterate over all 28 – 2 
assignments and compute the p-value as explained

– Note: for a small number n of measurements, we can 
easily try out (on a computer) all 2n – 2 assignments

But for larger n, this quickly becomes infeasible

For n = 30 we already have 230 ≈ 1 billion assignments

Then we can take a (large enough) random sample of 
assignments and compute the fraction for those
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Z-Test and T-Test   1/9

 Assumptions

– The Z-Test and the T-Test both assume an underlying 
probability distribution

– Z-Test: underlying normal distribution

– T-Test: underlying t-distribution

– Then, for our setting, the p-value is Pr(M ≥ ∆μ), where:

M is a random variable, modelling the difference of the 
means with the assumed probability distribution

∆μ is the value of M on the observed measurements

As a preparation, let us recap (on the next slides) some 
foundations from probability theory …
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Z-Test and T-Test   2/9

 General terminology

– Continuous random variable X = range is R

– Cumulative distribution function  Φ(x) = Pr(X ≤ x)

In particular: limx∞ Φ(x) = 1

– Mean of the distribution  μ = E X

– Variance of the distr.  σ2 = E (X – E X)2 = E X2 – (E X)2

The sqrt σ of the variance is known as standard deviation

– Basic linearity properties of E and var :

E (X + Y) = E X + E Y even if X and Y are dependent

var(X + Y) = var(X) + var(Y) only if X and Y independent

var(a · X) = a2 · var(X)      by var(X) = E X2 – (E X)2 above
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Z-Test and T-Test   3a/9

 The normal distribution

– Assumed as the underlying distribution in many scenarios

In the life sciences as well as in computer science

– Two parameters: the mean μ and the variance σ2

The corresponding distribution is denoted by N(μ, σ2)

– We will need to compute Pr(X ≥ x) where X has normal dist.

Beware: there is no closed formula for this

In the ancient past, lookup tables were used

Nowadays, just use a tool like Wolfram Alpha and type

"Pr(X >= 2.3) for standard normal distribution"

"Pr(X >= 2.3) for t-distribution with 8 degrees of freedom"
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Z-Test and T-Test   3b/9

 Properties of the normal distribution

– Property 1: If X has distribution N(μ, σ2), then
(X – μ) / σ has distribution N(0, 1)

Every normal distr. can be reduced to N(0, 1) by scaling

– Property 2: If X1 has distribution N(μ1, σ1
2) and X2 has 

distribution N(μ2, σ2
2), and X1 and X2 are independent

then X1 + X2 has distribution N(μ1 + μ2, σ1
2 + σ2

2)

The sum of normal random variables is again normal

– Property 3: Let X1,…,Xn be n i.i.d. (independent 
identically distributed) random variables, each with
mean μ and variance σ2 . Then (X1 + … + Xn) / n
converges to N(μ, σ2) as n  ∞

Property 3 is also known as the Central Limit Theorem
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Z-Test and T-Test   4/9

 The χ2 distribution                χ = small Greek letter "chi"

– Let Z1, …, Zn be i.i.d. from N(0, 1)

– Then the distribution of Z = Z1
2 + … + Zn

2 is defined as:

the χ2 distribution with n degrees of freedom aka χ2(n)

– Why this is a practically relevant distribution:

Consider measurements X1, …, Xn , each from N(μ, σ2)

Let M = Σ Xi / n be the estimated mean,  E M = μ

Let S2 = Σ (Xi – M)2 / n be the estimated variance, E S2 = σ2

Then S2 · n / σ2 = Σ ((Xi – M) / σ)2 has a χ2(n) distribution

Intuitively: the variance of a series of measurements
has a χ2 distribution (up to scaling)
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Z-Test and T-Test   5/9

 The Student's t-distribution

– Let us define it by how we pick a random X from it, in
comparison to the standard normal distribution:

Standard Normal distribution (μ = 0, σ = 1):

Pick X from N(0, 1)

T-distribution with n degrees of freedom:

First pick V from χ2(n), then pick X from N(0, V / n)

– Note that E V = n (slide 17) and that for n  ∞ we have
V / n  1 and the two distributions become the same

Actually, there is a marked difference between the two 
distributions only for small n, say n ≤ 50
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Z-Test and T-Test   6/9

 More intuition about the difference

– By also considering the variance as a random variable, 
the t-distribution is less concentrated around its mean 
than the corresponding normal distribution

– Here is an example which provides some intuition

Experiment 1:  pick X uniformly from [-10, 10]

Experiment 2: first pick V uniformly from [5, 15],
then pick X uniformly from [-V, V]

Now extreme values (< -10 or > 10) become more 
likely, and values around  the mean become less likely

Note that the mean remains zero in Experiment 2
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Z-Test and T-Test   7/9

 The Z-Test assumption: underlying normal distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let σ2 = Σ (Xi – μ)2 / n be the estimated variance, µ = ∑i Xi / n

– Null hypothesis: M has distribution N(0, 4σ2 / n)

– Then Z = √n · M / (2σ)  has distribution N(0, 1)

– The p-value of the Z-Test is then Pr(M ≥ ∆μ) = Pr(Z ≥ x), 
where x = √n · ∆μ / (2σ)  and ∆μ is the observed value of M

Estimate via Wolfram Alpha (see slide 15) or via lookup table:

http://en.wikipedia.org/wiki/Standard_normal_table
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Z-Test and T-Test   8/9

 The T-Test assumption: underlying t-distribution

– Given two series X1 and X2 of a total of n measurements

– Let M = M1 – M2 be the difference of the means of X1 and X2

– Let σ2 = Σ (Xi – μ)2 / n be the estimated variance, µ = ∑i Xi / n

– Null hypothesis:  M has distribution N(0, V · 4σ2 / n2), where
V has distribution χ2(n) with n deg. of freedom … see slide 17

– Then T = √n · M / (2σ) has t-distrib. with n deg. of freedom

– The p-value of the T-Test is then Pr(M ≥ ∆μ) = Pr(T ≥ x), 
where x = √n · ∆μ / (2σ)  and ∆μ is the observed value of M

Estimate via Wolfram Alpha (see slide 15) or via lookup table:

http://en.wikipedia.org/wiki/T-distribution#Table_of_selected_values
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Z-Test and T-Test   9/9
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 Back to our rolling dice example

– Recall our two series of dice rolls

A :  1 , 3 , 3 , 5

B :  6 , 6 , 4 , 4 

– Difference of means ∆μ is:

– Estimated variance σ2 is: 

– Value x of √n ·  ∆μ / (2σ) is:   = √8 · 2 / (2√2.5) ≈ 1.789

– Z-test: p-value Pr(Z ≥ x) is:  ≈ 0.0368 = 3.68%

– T-test: p-value Pr(T ≥ x) is:  ≈ 0.0520 = 5.20%

For "two-sided" p-values, simply multiply by 2
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