Information Retrieval WS 2013 / 2014

Lecture 13, Tuesday February 4th, 2014 (Hypothesis Testing, Statistical Significance)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

Organizational

- Your results + experiences with Ex. Sheet 12 (Ontologies)

BURG

- The official **evaluation** of this course
- Hypothesis Testing
 - How to determine whether an observed effect is what is called statistically significant ?
 - This is a **must** when the observed effect is small, and the variation is large
 - Specifically today: R(andomization)-Test, Z-test, T-test
 - Exercise Sheet 13: determine the statistical significance of the difference between BM25 and TF-IDF on five queries

Experiences with ES#12 (Ontologies)

Summary / excerpts last checked February 4, 15:30

- Liked the introduction to Ontologies & SPARQL
- Too much effort for parsing the SPARQL query (in C++)

Sorry, I forgot to say that Python would have been ok for this exercise too, since efficiency was not the issue

Constant values were not explained ... settled on Forum

Official course evaluation

Instructions

You received an email from EvaSys Admin on Thursday,
 January 30 with a link to an online evaluation form

REIBURG

- We are **very** interested in your feedback
- Please take your time for this

You will get 20 wonderful points !

- Please be honest and concrete
- The free text comments are most interesting for us
 Please complete by Sunday, February 9

The evaluation is centralized this time, and will be closed after that date, and there is nothing we can do about that

Hypothesis Testing 1/5

Motivation

- Typical situation in research: compare the outcome of two experiments
 - E.g. in the **life sciences**: health status for two groups of people, one taking a particular medication and one not
 - E.g. in **computer science**: the performance of two systems, using different algorithms or different parameter settings

- The outcome of the experiments will be different

But even carrying out the same experiment twice will give different results because of random fluctuations

Key question: how to tell a "real" difference between the two experiments from mere random fluctuation

Example 1: Prediction of coin tosses

Ten predictions in a row, C = correct, W = wrongCCCCCCCCC (all ten predictions are correct)

BURG

– Do we believe in this person's ability to predict?

Hypothesis testing answers this as follows

- Null hypothesis H_0 = the person cannot predict = is just making random guesses ... mathematically: $Pr(C) = \frac{1}{2}$
- Compute the probability of the observed data, under the assumption that the null hypothesis H_0 is true Pr(all ten correct | H_0) = $2^{-10} \le 0.001 = 0.1\%$
- We say that we can reject H_0 with probability \geq 99.9% Thus very unlikely that this great prediction was mere chance

Hypothesis Testing 3/5 $\binom{m}{2} = \frac{m!}{2!(m-2)!}$

Example 1: continuation

- Let's assume, in a different series we get
 CCCWCCCWCC (8 correct, 2 wrong)
- What is now the probability that this is due to chance?

UNI FREIBURG

 $\begin{pmatrix} 10\\ 8 \end{pmatrix} = \frac{10 \cdot 9}{4 \cdot 2}$

 $\begin{pmatrix} \chi_0 \\ g \end{pmatrix} = 10$

Note: we should **not** ask for the probability of **exactly 8** correct guesses to happen; it makes more sense to ask for the prob. of **8 or more** correct guesses to happen $\mathcal{P}_{rr} (= \mathcal{S} \text{ correct } | +_{0}) = (\frac{10}{8}) \cdot 2^{-10} + (\frac{10}{3}) \cdot 2^{-10} + 2^{-10}$ $= (4S + 10 + 1) \cdot 2^{-10}$ $= 56 \cdot 2^{-10} \approx 0.056 = 5.6\%$

General terminology

- We start with a hypothesis H e.g. ability to predict coin tosses
- Null hypothesis H_0 = the opposite of H e.g. random guessing
- **Statistical test:** compute the probability p of the given or more extreme data assuming that H_0 is true

This probability p is called the **p-value**

If p is small enough, one says something like:

The outcome of the experiment is **statistically significant** (for the hypothesis) with significance level p

In the life sciences, people are usually happy with p < 0.05 or p < 0.01

Hypothesis Testing 5/5

Example 2: two dice with unknown distribution

- Two dice A and B, four rolls each A: 1, 3, 3, 5 B: 6, 6, 4, 4

REIBURG

- Null hypothesis H_0 = the two dice A and B are identical
- Given H_0 , what is the probability of observing A and B
- We will look at three well-known statistical tests
 R-Test: simple + makes no probabilistic assumptions
 Z-Test: assume normal distribution with fixed variance
 T-Test: like Z-test, but also model variance distribution

R(andomization)-Test 1/3

One of the simplest statistical tests

– Assume we have two series of measurements, A and B

BURG

- Null hypothesis = no difference between A and B
- Then we can assume that the measurements come from one experiment + assignment to either A or B is arbitrary
- The R-Test considers all 2ⁿ possible assignments of the n measurements to either A or B
- For each assignment, compute the difference $\Delta\mu$ of the means, and see if it is \geq the $\Delta\mu$ on the observed data

The fraction of assignments for which this is the case is the p-value according to the R-Test

R(andomization)-Test 2/3

Application to our dice example

- A: 1,3,3,5 $\mu_{A} = (1+3+3+5)/4 = 3$ B: 6,6,4,4 $\mu_{B} = (6+6+4+4)/4 = 5$ $\Delta \mu = 2$
- Here are some of the 2^8 possible assignments of these 8 measurements to either A or B and the respective $\Delta\mu$

Note: we ignore the two assignments, where all measurements are assigned all to A or all to B, because we can't compute a meaningful mean difference then

11

R(andomization)-Test 3/3

Continuation of the example

- Let's write a program together to iterate over all 2⁸ 2 assignments and compute the p-value as explained
 For 46 and of 254 assignments, per [Apr] is 2 a more (in eiter direction)
 per [Apr] is 2 a more (in eiter direction)
 p-value = 46/254 = 18.1% = really right.
- Note: for a small number n of measurements, we can easily try out (on a computer) all 2ⁿ 2 assignments
 But for larger n, this quickly becomes infeasible
 For n = 30 we already have 2³⁰ ≈ 1 billion assignments
 Then we can take a (large enough) random sample of assignments and compute the fraction for those

Z-Test and T-Test 1/9

Assumptions

- The Z-Test and the T-Test both assume an underlying probability distribution
- Z-Test: underlying normal distribution
- T-Test: underlying **t-distribution**
- Then, for our setting, the p-value is $Pr(M \ge \Delta \mu)$, where:

M is a random variable, modelling the difference of the means with the assumed probability distribution

 $\Delta\mu$ is the value of M on the observed measurements

As a preparation, let us recap (on the next slides) some foundations from probability theory ...

Z-Test and T-Test 2/9

General terminology

- Continuous random variable X = range is R
- Cumulative distribution function $\Phi(x) = Pr(X \le x)$ In particular: $\lim_{x\to\infty} \Phi(x) = 1$
- **Mean** of the distribution $\mu = \mathbf{E} \mathbf{X}$
- Variance of the distr. $\sigma^2 = \mathbf{E} (\mathbf{X} \mathbf{E} \mathbf{X})^2 = \mathbf{E} \mathbf{X}^2 (\mathbf{E} \mathbf{X})^2$

The sqrt σ of the variance is known as standard deviation

INI

– Basic linearity properties of E and var :

 $\mathbf{E}(X + Y) = \mathbf{E}X + \mathbf{E}Y$ even if X and Y are dependent $\mathbf{var}(X + Y) = \mathbf{var}(X) + \mathbf{var}(Y)$ only if X and Y independent $\mathbf{var}(a \cdot X) = a^2 \cdot \mathbf{var}(X)$ by $\mathbf{var}(X) = \mathbf{E}X^2 - (\mathbf{E}X)^2$ above

Z-Test and T-Test 3a/9

The normal distribution

Assumed as the underlying distribution in many scenarios
 In the life sciences as well as in computer science

 $\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

T

1=0

- Two parameters: the mean μ and the variance σ^2 The corresponding distribution is denoted by N(μ , σ^2)
- We will need to compute Pr(X ≥ x) where X has normal dist.
 Beware: there is no closed formula for this
 In the ancient past, lookup tables were used
 Nowadays, just use a tool like Wolfram Alpha and type
 "Pr(X >= 2.3) for standard normal distribution"
 "Pr(X >= 2.3) for t-distribution with 8 degrees of freedom"

Z-Test and T-Test 3b/9

Properties of the normal distribution

- **Property 1:** If X has distribution $N(\mu, \sigma^2)$, then $(X - \mu) / \sigma$ has distribution N(0, 1)

Every normal distr. can be reduced to N(0, 1) by scaling

standord

- **Property 2:** If X₁ has distribution N(μ_1 , σ_1^2) and X₂ has distribution N(μ_2 , σ_2^2), and X₁ and X₂ are independent then X₁ + X₂ has distribution N(μ_1 + μ_2 , σ_1^2 + σ_2^2)

The sum of normal random variables is again normal

- **Property 3:** Let $X_1, ..., X_n$ be n **i.i.d.** (independent identically distributed) random variables, each with mean μ and variance σ^2 . Then $(X_1 + ... + X_n) / n$ converges to N(μ , σ^2) as n $\rightarrow \infty$

Property 3 is also known as the Central Limit Theorem

, 200 dishilention N(0,1) Z-Test and T-Test 4/9

• The χ^2 distribution

 χ = small Greek letter "chi"

- Let $Z_1, ..., Z_n$ be i.i.d. from $\mathbb{N}(0, 1)$
- Then the distribution of $Z \models Z_1^2 + ... + Z_n^2$ is defined as: the χ^2 distribution with n degrees of freedom aka $\chi^2(n)$
- Why this is a practically relevant distribution:

Consider measurements X_1 , ..., X_n , each from N(μ , σ^2)

Let $M = \Sigma X_i / n$ be the estimated mean, $E M = \mu$

FV= M

V := Let $S^2 = \Sigma (X_i - M)^2 / n$ be the estimated variance, **E** $S^2 = \sigma^2$ Then $S^2 \cdot n / \sigma^2 = \Sigma ((X_i - M) / \sigma)^2$ has a $\chi^2(n)$ distribution **Intuitively:** the variance of a series of measurements has a χ^2 distribution (up to scaling)

17

Z-Test and T-Test 5/9

The Student's t-distribution

 Let us define it by how we pick a random X from it, in comparison to the standard normal distribution:

Standard Normal distribution ($\mu = 0, \sigma = 1$):

Pick X from N(0, 1)

T-distribution with n degrees of freedom:

EV/m=1

VIM Sow

First pick V from $\chi^2(n)$, then pick X from N(0, V / n)

Note that E V = n (slide 17) and that for n → ∞ we have V / n → 1 and the two distributions become the same Actually, there is a marked difference between the two distributions only for small n, say n ≤ 50

Z-Test and T-Test 6/9

More intuition about the difference

 By also considering the variance as a random variable, the t-distribution is less concentrated around its mean than the corresponding normal distribution

-NCO,N

Here is an example which provides some intuition
Experiment 1: pick X uniformly from [-10, 10]
Experiment 2: first pick V uniformly from [5, 15], then pick X uniformly from [-V, V]
Now extreme values (< -10 or > 10) become more likely, and values around the mean become less likely
Note that the mean remains zero in Experiment 2

The Z-Test assumption: underlying normal distribution

- Given two series X_1 and X_2 of a total of n measurements
- Let $M = M_1 M_2$ be the difference of the means of X_1 and X_2

REIBURG

- Let $\sigma^2 = \Sigma (X_i \mu)^2 / n$ be the estimated variance, $\mu = \sum_i X_i / n$
- Null hypothesis: M has distribution N(0, $4\sigma^2$ / n)
- Then $Z = \sqrt{n \cdot M} / (2\sigma)$ has distribution N(0, 1)
- The p-value of the Z-Test is then $Pr(M \ge \Delta \mu) = Pr(Z \ge x)$, where $x = \sqrt{n} \cdot \Delta \mu / (2\sigma)$ and $\Delta \mu$ is the observed value of M Estimate via Wolfram Alpha (see slide 15) or via lookup table: <u>http://en.wikipedia.org/wiki/Standard_normal_table</u>

The **T-Test** assumption: underlying **t-distribution**

- Given two series X_1 and X_2 of a total of n measurements
- Let $M = M_1 M_2$ be the difference of the means of X_1 and X_2

REIBURG

- Let $\sigma^2 = \Sigma (X_i \mu)^2 / n$ be the estimated variance, $\mu = \Sigma_i X_i / n$
- **Null hypothesis:** M has distribution N(0, V \cdot 4 σ^2 / n²), where V has distribution $\chi^2(n)$ with n deg. of freedom ... see slide 17
- Then $T = \sqrt{n \cdot M} / (2\sigma)$ has **t-distrib.** with n deg. of freedom
- The p-value of the T-Test is then $Pr(M \ge \Delta \mu) = Pr(T \ge x)$, where $x = \sqrt{n} \cdot \Delta \mu / (2\sigma)$ and $\Delta \mu$ is the observed value of M Estimate via Wolfram Alpha (see slide 15) or via lookup table: <u>http://en.wikipedia.org/wiki/T-distribution#Table_of_selected_values</u>

Z-Test and T-Test 9/9

Back to our rolling dice example

- Recall our two series of dice rolls A: 1, 3, 3, 5 B: 6, 6, 4, 4 $M_B = \frac{4+3+3+5}{4} = 5$
- Difference of means $\Delta \mu$ is: 2. - Estimated variance σ^2 is: $\frac{(1-\eta)^2 + (3-\eta)^2 + (3-\eta)^2 + (5-\eta)^2 + ((-\eta)^2 - 2 + (4-\eta)^2 - 2)}{9}$ = (3 + 4 + 4 + 4 + 4) (8 = 20/8 = 2.5)

JNI FREIBURG

 $M = \frac{MA + MB}{2} = 4$

- Value x of $\sqrt{n} \cdot \Delta \mu / (2\sigma)$ is: = $\sqrt{8} \cdot 2 / (2\sqrt{2.5}) \approx 1.789$
- **Z-test:** p-value $Pr(Z \ge x)$ is: $\approx 0.0368 = 3.68\%$
- **T-test:** p-value $Pr(T \ge x)$ is: $\approx 0.0520 = 5.20\%$

For "two-sided" p-values, simply multiply by 2

References

UNI FREIBURG

Further reading

Smucker, Allan, Carterette: A Comparison of Statistical Significance Tests for IR Evaluation, CIKM 2007

http://ciir-publications.cs.umass.edu/getpdf.php?id=744

- Wikipedia
 - http://en.wikipedia.org/wiki/Statistical hypothesis testing
 - <u>http://en.wikipedia.org/wiki/P-Value</u>
 - <u>http://en.wikipedia.org/wiki/Z-test</u>
 - <u>http://en.wikipedia.org/wiki/Student's t-test</u>
 - <u>http://en.wikipedia.org/wiki/Student's t-distribution</u>