
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 12, Tuesday January 28th, 2014
(Ontologies, SPARQL, Relation to SQL)



Overview of this lecture

 Organizational

– Your results + experiences with Ex. Sheet 11 (NB vs. SVM)

 Ontologies

– Ontologies = fact databases … ask questions like:

Actors that are married and starred in the same movie

– The SPARQL ontology query language

– Translate SPARQL queries to SQL queries on a database

– Performance issues (join order)

– Exercise Sheet 12:  Implement SPARQL  SQL translation 
and use to process SPARQL queries with the SQLite database

2



Experiences with ES#11   (NB vs. SVM)

 Summary / excerpts        last checked January 28, 14:00

– Exercise helped to understand concepts more deeply 

– The theoretical task wasn't as hard as it first looked

– Ambiguous notation: the w1, …, wm denoted both the words 
from the vocabulary and the m components of the w vector

Sorry, will be fixed next time I give the course

– Small mistake on slide 12 of last lecture:   Pr(b|A)  Pr(a|B)

– Vector representation was different from that for ES#10

But the same as in all other lectures before that, and anyway, 
the two representations are equivalent (slide 9 of last lecture)

– Thanks again for the great feedback from the tutor

3



Your results for ES#11   (SVM vs. NB)

 Summary

– Dataset 1: actors and politicians, 18,499 documents

Accuracy of 98% for both SVM and NB

– Dataset 2: singers and songwriters, 8,913 documents

– Accuracy of 92% for SVM and of 89% for NB

– On both datasets zero outliers for the SVM and a much 
larger margin than for NB (which does not care about margin size)

However, this does not seem to matter much for accuracy

– Experience shows that NB typically estimates badly the
Prob(C=c | doc), but nevertheless often classifies well

In practice, one is often not interested in accurate probabilities, 
but just that the correct class gets the highest probability

4



Ontologies   1/5

 Ontology = a database of facts on entities

– With unique names / identifiers for each entity

– Facts are expressed as  subject predicate object triples

Brad Pitt acted in   Mr. and Mrs. Smith
Brad Pitt acted in   Burn After Reading
Angelina Jolie acted in   Mr. and Mrs. Smith
Joel Cohen directed Burn After Reading
Ethan Cohen directed Burn After Reading
Brad Pitt married to   Angelina Jolie

Understand: we can always decompose more complex 
facts into triples, so triples is all we need

5



Ontologies   2/5

 Relation to the "Semantic Web"

– The classical web contains a lot of facts hidden in text

For example: infos about an actor or a movie on IMDB

– The Semantic Web (SW) initiative is concerned with
making ontology data explicitly available on the web

– The challenges of SW are really about standardization:

Unique identifiers … use URIs + namespaces

Diff. identifiers meaning the same thing … use owl:sameAs

Well-defined syntax … RDF has become common

– This is not the topic of this lecture / course

6



Ontologies   3/5

 Example 1: the GeoNames ontology

– Very complete database of geographical features:

Cities, countries, rivers, mountains, roads, …

– Around 10M entities, 250MB compressed

– Download from http://www.geonames.org

– RDF endpoint:  http://www.geonames.org/ontology

Great dataset, but for this lecture we want something 
more general-purpose …

7



Ontologies   4/5

 Example 2: the YAGO ontology (Yet Another Great Ontology)

– From Suchanek et al, WWW 2007 & J.Web.Sem 2008

– General-purpose facts, extracted from Wikipedia + WordNet

– Original dataset: about 120M facts on 10M entities

Of those, only about 10M are real "facts" that we as  
humans would find useful … this is typical for ontologies

– Download from http://www.mpi-inf.mpg.de/yago

– Accuracy is good, but many popular facts are missing, e.g. 
only very few actors per movie are known

Nevertheless, small and simple and was hence quite popular 
with researchers (including us) for a while …

8



Ontologies   5/5

 Example 3: the FreeBase Ontology

– A general-purpose ontology, community-maintained

– Developed by Metaweb, aquired by Google in 2010

– Freely available: https://developers.google.com/freebase/data

Currently 2500M facts on 50M entities, 25GB compressed

Rather complex schema + some inconsistencies

– Nicer version: http://freebase-easy.cs.uni-freiburg.de

Around 250M facts on 50M entities, 2.5GB compressed

The currently most complete and most accurate general-
purpose ontology … we extracted a nice subset for you !

9



SPARQL   1/5

 Structured queries on ontologies

– Example query in natural language:  actors who are 
married and starred together in at least one movie

– Difference between ontology search and text search

There is a well-defined result set … no fuzzy "relevance"

– SPARQL = SPARQL Protocol And RDF Query Language

– The standard query language for ontology queries

SELECT ?person1 ?person2 ?movie WHERE {
?person1  acted_in ?movie  .
?person2  acted_in ?movie  .
?person1  married_to ?person2

}

10



SPARQL   2/5

 Viewing SPARQL queries as subgraphs

– On can view a (triple) ontology as a graph, where the 
nodes are the entities, and the edges are the facts 

– A SPARQL query is then a sub-graph with variables at 
some or all of the nodes

– The goal is to find all matches in the ontology graph

11



SPARQL   3/5

 SPARQL looks very much like SQL

– Indeed, ontology data is naturally stored in databases

– The standard query language for databases is SQL

– Assume we have two tables film (with columns actor and 
movie) and spouse (with columns person1 and person2)

SELECT spouse.person1, spouse.person2
FROM spouse, film as film1, film as film2
WHERE spouse.person1 = film1.actor
AND spouse.person2 = film2.actor
AND film1.movie = film2.movie;

Let's play around a bit with SQLite … see slides 15 - 17

12



SPARQL   4/5

 SPARQL to SQL: generic translation

– In the following example, we use one table per relation, 
each with two columns, just named subject and object

For ES#11, use one big table for all the data, with 
three columns named subject, predicate, object

13



SPARQL   5/5

 SPARQL to SQL: implementation advice for ES#11

– If there are k query triples in the SPARQL query, have k
entries in the FROM clause of the SQL query

FROM freebase as f1, freebase as f2, ... , freebase as fk

– In your code, for each variable from the SPARQL query, 
build an array of all its occurrences in the query, e.g.

?x:  f1.subject, f2.object, f5.object

– Then, when building the SQL query, add the corresponding 
equalities to the WHERE clause, e.g.

WHERE  f1.subject = f2.object AND f2.object = f5.object

Note: if ?x occurs m times, m – 1 equalities are enough

14



SQLite   1/3

 A full-fledged database, easy to install and use

– Download from http://www.sqlite.org

– On Debian/Ubuntu install with: sudo apt-get install sqlite3

– Two types of commands … examples on next slides

SQL commands: must end with a semicolon

SQLite commands:  start with a dot, no semicolon at end

– Two modes to start SQLite:

sqlite3 will work on an in-memory database

sqlite3 <name>.db create database in that file, and if file
exists, use database from that file

15



SQLite   2/3

 Some useful SQLite commands by example
– Specifies the column separator used for input and output

.separator " "                    use Ctrl+V TAB for TAB ! 

– Read table from TSV (tab-separated values) file

.import film.tsv film

– Show execution time of every command

.timer on

– Output to file (use stdout for output to console again)

.output <file name>

– Execute commands from script file (typical suffix is .sql)

.read <file with commands>
16



SQLite   3/3

 Some useful SQL commands by example

– Create a table with a given schema

CREATE TABLE film(actor TEXT, movie TEXT);

– Create an index for a column of a table

CREATE INDEX file_index ON film(actor);

– Extract / combine data from tables

SELECT * FROM film WHERE … LIMIT 100;

– Delete table / index (without error msg if it's not there)

DROP TABLE IF EXISTS film;

DROP INDEX IF EXISTS film_index;

17



Performance   1/4

 Cross product of tables

– Understand that, conceptually, an SQL statement like

FROM  T1, T2, …, Tk WHERE … = … AND … = … AND …

selects elements from the cross-product

T1 × ··· × Tk (which has |T1| · ··· · |Tk| elements) 

(where some or all of the Ti can be the same table)

18



Performance   2/4

 Joining of tables

– The WHERE … = … effectively ask for a JOIN

– This JOIN effectively asks for a list intersection

– If we CREATE an index for the respective tables on the 
respective join attributes, this list intersection gets fast

19



Performance   3/4

 Join ordering

– Typical SQL-from-SPARQL queries require multiple joins

– Order of joins can make a huge performance difference

– For our example query, the film table (actors – movies) is 
more than ten times larger than the spouse table

– Join order 1: look at all married couples and for each get 
their movies and check whether they overlap

materializes list of movies of all married people (small)

– Join order 2: look at all pairs of actors who played in the 
same movie, and for each check whether they are married

materialized all pairs of actors from same movie (large)

20



Performance   4/4

 Join ordering, continued

– Without further ado, SQLite seems to take the order of 
the tables in the FROM clause as its join order

SELECT spouse.person1, spouse.person2
FROM film as film1, film as film2, spouse
WHERE spouse.person1 = film1.actor
AND spouse.person2 = film2.actor
AND film1.movie = film2.movie;

Alternatives: (note that there are 6 possible orderings) 

FROM spouse, film as film1, film as film2

FROM spouse, film as film2, film as film1

21



References

 Textbook

– Nothing about this topic in the text book by Manning, 
Raghavan, and Schütze

 Wikipedia

– http://en.wikipedia.org/wiki/Ontology_(information_science)

– http://en.wikipedia.org/wiki/SPARQL

– http://en.wikipedia.org/wiki/SQL

– http://en.wikipedia.org/wiki/SQLite

– http://en.wikipedia.org/wiki/Freebase

22


