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Overview of this lecture

 Organizational

– Your results + experiences with Ex. Sheet 10 (Naive Bayes)

– The oral exams (ONLY for the computer science bachelor 
students) are on February 21 + March 27 (you can choose)

 Support Vector Machines (SVMs)

– Another linear classifier, just like Naive Bayes

– But with a different objective function (max. margin size)

– Some more linear algebra … you will love it

– We will play around with the SVM Light software

– Exercise Sheet 11:  Prove that Naive Bayes is a linear 
classifier + compute the margin size on the given dataset
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Experiences with ES#10   (Naive Bayes)

 Summary / excerpts        last checked January 21, 15:50

– Easier again then the last sheet

– Very interesting topic

– Most of you have time issues and start late

– What kind of questions in the oral exams … see next slide
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Your results for ES#10   (Naive Bayes)

 For our dataset   (50.562 docs, 10 classes)

– Training time (10% of the docs): around 0.1 seconds

– Prediction time (90% of the docs): around 1 second

– Bottom line 1:  Naive Bayes is quite efficient, namely: 
50K documents / second for both training and prediction

– The precision is between 80% and 90%

– Bottom line 2:  Sounds good, but without having seen 
other methods, it's hard to tell how good exactly

Today we will see a comparison with SVMs
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Exam   (applies to both written and oral exam)

 Three types of questions

– Type 1: Do the steps of an algorithm, or a variant 
thereof, like we did in the lecture 

– Type 2: Write a small program, or understand what a 
given small program does

– Type 3: Small calculations or proofs

– The emphasis is on (basic) understanding, not on 
learning things by heart

You can use course materials during the exam

– To prepare, understand how it was done in the lecture, 
then put the solution away, then try do to it yourself

If you did the exercises, not much left to do for you
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Linear Classifiers   1/5

 Informally

– Assume the objects are points in d dimensions

– Let's assume we have only two classes for now

– A linear classifier tries to separate the data points by a
(d-1)-dimensional hyperplane … definition on next slide

For d = 2 this means:  try to separate by a straight line

– Predictions are made based on which side of the 
hyperplane / straight line the object lies on

– Note: points in the training set may not be separable
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Linear Classifiers   2/5

 Formal definition of a hyperplane

– A hyperplane H in Rd if defined by an anchor point a ϵ Rd, 
and linearly independent h1, …, hd-1 and consists of all linear 
combinations a + Σi αi hi for arbitrary α1, …, αd-1 ϵ R

– Lemma: For each such H, there exists a w ϵ Rd orthogonal 
to h1, …, hd-1 and b ϵ R such that  H = { x ϵ Rd : w ● x = b } 

– Proof: Pick any w orthogonal to h1, …, hd-1 and let b = w ● a
Then we can show that   x ϵ H  ⇔ w ● x = b 
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Linear Classifiers   3/5

 Distance from a point to a hyperplane

– Let H = { x ϵ Rd : w ● x = b } be a hyperplane in Rd

– Then the distance of a point x ϵ Rd to H is |w ● x – b| / |w|

– The sign of w ● x – b says on which side of H lies x
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Linear Classifiers   4a/5

 Two-class Naive Bayes (NB) is a linear classifier

– Recall how NB predicts the probability of a class C for d

Pr(C | d) = Pr(C) · Πi=1,…,|d| Pr(wi | C),  |d| = #words in d

where wi is the i-th word of d

Note: #features = #words in the document

– We can equivalently write this as 

Pr(C | d) = Pr(C) · Πi=1,…,|V| Pr(wi | C)fi, V = vocabulary

where wi is the i-th word in V, and fi = #occ of wi in d

Note: #features = size of the vocabulary
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Linear Classifiers   4b/5

 Two-class Naive Bayes (NB) is a linear classifier

– Lemma: Assume our two classes are called A and B ,
and define b ϵ R and w ϵ R|V| as follows:

b = – log2 (Pr(A) / Pr(B)), wi = log2 (Pr(wi | A) / Pr(wi | B))

Then NB predicts A for x if w ● x – b > 0, and B otherwise

– Proof:  Exercise 11.1

This is a good exercise for understanding the linear algebra 
behind linear classifiers. It's not hard, but you have to 
understand the basic concepts, so perfect exercise :-)
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Linear Classifiers   5a/5

 The toy example from our last lecture again:
Doc 1:  aba class A
Doc 2:  baabaaa class A
Doc 3:  bbaabbab class B
Doc 4:  abbaa class A
Doc 5:  abbb class B
Doc 6:  bbbaab class B
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Linear Classifiers   5b/5

 The toy example from our last lecture again:
Doc 1:  aba class A
Doc 2:  baabaaa class A
Doc 3:  bbaabbab class B
Doc 4:  abbaa class A
Doc 5:  abbb class B
Doc 6:  bbbaab class B
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Support Vector Machines   1/8

 Intuition

– Place the separating hyperplane H such that the symmetric 
margin around H until the next points is as large as possible

– In R2 this means: try to separate the point sets with not just  
a line, but a "band" of width 2r, with r > 0 as large as possible

– Points on the margin boundary are called support vectors
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Support Vector Machines   2/8

 Derivation of formal optimization problem

– Let x1, …, xm ϵ Rd be the objects from the training set

– Let yi = +1 if xi is in class A,  yi = -1 if xi is in class B

– Let H = { x in Rd : w ● x = b } be a separating hyperplane, 
such that w ● xi – b > 0 for xi from A, and < 0 for xi from B

– Then  dist(xi , H) = yi · (w ● xi – b) / |w|      (see slide 7)

– This gives rise to the following maximization problem:

Maximize 2r, such that  yi · (w ● xi – b) / |w| ≥ r  for all i

– We can equivalently formulate this as … proof on next slide

Minimize |w|2, such that yi · (w ● xi – b) ≥ 1  for all i

– This is a well-known kind of optimization problem … slide 14
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Support Vector Machines   3/8

 Proof of equivalence of

– Maximize 2r, such that  yi · (w ● xi – b) / |w| ≥ r  for all i

– Minimize |w|2, such that yi · (w ● xi – b) ≥ 1  for all i 
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Support Vector Machines   4/8

 We now have a quadratic optimization problem

– The |w|2 = w ● w  is a quadratic objective function 

– The  yi · (w ● xi – b) ≥ 1  are linear constraints

– There are established numerical methods for this kind of 
problem, but the details are beyond the scope of this course

– Similar as for the SVD, we will use third-party software:

SVM Light … see next slide
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Support Vector Machines   5a/8

 SVM Light Software

– Solves the described quadratic optimization problem

– Download from http://svmlight.joachims.org

– Usage for training:

./svm_learn <training data> <model>

The file with the training data contains one line per 
document (label + features with their counts), see
live demo for exact format

The mode file stores the optimal w and b … the console 
outputs provides |w| and the number of outliers

Note from slide 15, that the size of the margin is 2 / |w|
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Support Vector Machines   5b/8

 SVM Light Software

– Usage for classification:

./svm_classify <testing data> <model file> <output file>

Format for testing data is like for training data

The output file contains the value 
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Support Vector Machines   6/8

 So far complete linear separation or nothing

– The optimization problem can be easily extended to 
incorporate outliers = objects in the training set that lie 
inside of the margin or even on the wrong side of it:

Minimize |w| / 2 + C · Σi ξi
such that yi · (w ● xi – b) / |w| ≥ 1 – ξi for all i

where ξi > 0 and the C > 0 is a user-defined parameter
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Support Vector Machines   7/8

 Multi-Class Support Vector Machines

– Assume we have an arbitrary number of k classes again

– Option 1: Build k classifiers, one for each class, with the
i-th one doing the classification:  Class i OR  not Class i

Drawback:  Need to "vote" when more than one class wins

– Option 2: Build k · (k – 1) / 2 classifiers, one for each 
subset of two classes

Drawback: For large k, that's a lot of classifiers !

– Option 3: Extend the SVM theory to be able to deal with 
more than two classes directly

Drawback: optimization problem becomes more complex
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Support Vector Machines   8/8

 What if the data is not at all linearly separable

– … even when allowing for a few outliers

– Standard trick: map objects to a different vector space, 
where they become (almost) linearly separable again

– For SVMs, this can be done particularly efficiently, with 
the so-called "kernel" trick … see machine learning lecture
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