Information Retrieval WS 2013 / 2014

Lecture 10, Tuesday January 14th, 2014 (Naive Bayes)

Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

Overview of this lecture

Organizational

- Your results + experiences with Ex. Sheet 9 (k-means)

REI

- Date for the exam: Wednesday, February 19, 2014

Time: 14 – 16 h, Room: to be announced

- Classification using Naive Bayes
 - Like clustering, but **learns** from a training set
 - This is then called **classification**
 - Naive Bayes is one of the simplest classification methods
 - Exercise Sheet 10: Classify the documents from ES#10 (100K articles about people) using Naive Bayes

Summary / excerpts last checked January 14, 15:30

- Ok conceptually, but quite challenging in the details
- The difficulty is not k-means, but treating documents as objects of which one can compute the average

N III

- Can be parallelized very well; one student implemented a multi-threaded version: k threads \rightarrow almost k times faster
- Good thing that we made no new year's resolution ... we would have failed them already
- Point distribution is uneven sometimes, and so is the distribution of the level of detail in the TIP file
- Many of you have time stress it seems

Your results for ES#9 (k-means)

- For our dataset (100.000 docs, 1000 terms, 50 clusters)
 - Relatively few iterations (10 20) are enough
 - A single iteration is quite time-intensive (10-20 seconds)
 - Typical RSS was around 68.500, that is, 0.68 per document, that is, an average score difference of 0.03 per term

Z H

- For many centroids, words belong to same intuitive "topic" chinese china hong kong dynasty han republic li zhou people singer songwriter music pop american is an album born albums
- For some centroids, the similarity is of a different kind
 his he to in as of with on that by (all frequent)
 irish ireland o dublin dála teachta td an fianna fáil (same language)

Naive Bayes 1/10

High-level view

- Given a set of **objects** and a set of **classes**
- For each object from a given so-called **training set**, we know to which class it belongs

REI

- Learn from this training set, and then predict the class for arbitrary other objects, from a so-called **testing set**
- Difference to K-means
 - Naive Bayes is supervised = gets some input to learn from; K-means is unsupervised = gets no such input
 - Naive Bayes does soft clustering = each object may be assigned to more than one class

Typically, one is only interested in the "top" class though

Naive Bayes 2/10

Example

- Training set of documents with known class

Thomas Houldsworth was a Tory, and then Conservative Party, politician in England. He was a Member of Parliament (MP) for 34 years, ... Politician

BURG

REI

Ann May was a silent film star who made motion pictures from 1919 - 1925. Her given name was Anna Max and she was born in Cincinnati, Ohio. Actor

- Testing set of documents, predict class for each

George Siegmann was an American actor in the silent film era. He is listed as having been in over 100 films. **which class ?**

Harvey McLane was a Canadian provincial politician. He was the Liberal member of ... which class?

Three basic steps

- Step 1: represent each object as a vector

We take one dimension per word in a document ... next slide

BURG

REI

In the context of learning, these are often called feature vectors (each dimension = one feature)

- Step 2: learn how "likely" each feature is for each class, e.g.
 Prob(film | Actor) = 0.05
 Prob(parliament | Actor) = 0.01
- Step 3: predict, using the probabilities from Step 2, how likely a class is for a given feature vector

Prob(Politician | Document on George Siegmann) = 0.8 Prob(Actor | Document on Georges Siegmann) = 0.2

- Probabilistic model ... so that the "likely" becomes precise
 - We assume the following random process for generating a document with m words

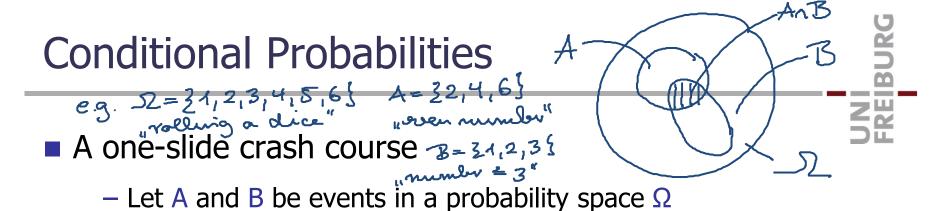
BURG

NI NI NI

Pick class c with probability $p_c \dots$ where $\Sigma_c p_c = 1$

Pick the i-th word as w with prob. p_{cw} ... where $\Sigma_w p_{cw} = 1$

- Each word is picked independently of the other words
 - This is clearly unrealistic (hence the name **Naive** Bayes): e.g. when "relativity" is present, "theory" is more likely
- However unrealistic, these assumptions give us welldefined probabilities to compute with ...



- Denote by Pr(A | B) the probability of A n B in the space B
 - (1) Pr(A | B) := Pr(A n B) / Pr (B)
 - (2) $Pr(A \mid B) \cdot Pr(B) = Pr(B \mid A) \cdot Pr(A)$
- The latter is called **Bayes Theorem**, after Thomas Bayes, 1701 – 1760

- For an intuitive understanding, assume
that
$$\Omega$$
 is finite, and all x in Ω equiprobable:
 $P_{rr}(A) = \frac{|A|}{|SL|}$, $P_{rr}(B) = \frac{|B|}{|SL|}$
 $P_{rr}(A|B) = \frac{|A \cap B|}{|B|} = \frac{|A \cap B| / |SL|}{|B| / |SL|} = \frac{P_{rr}(A \cap B)}{P_{rr}(B)}$
 $P_{rr}(B|A) = \frac{P_{rr}(A \cap B)}{P_{rr}(A)} \implies P_{rr}(A \cap B) = P_{rr}(A) \cdot P_{rr}(B|A)$ (2)

Maximum Likelihood Estimation (MLE)

Another one-slide crash course
 Consider a sequence of coin flips, for example
 HHTTTTHTTHTTHTTHTTHTTHTT (5 times H, 15 times T)

UNI FREI

- Which Pr(H) and Pr(T) are the most likely?
- Looks like $Pr(H) = \frac{1}{4}$ and $Pr(T) = \frac{3}{4}$... let's prove this p = Pr(H), 1 - p = Pr(T) = Pr(H), 1 - p = Pr(H), 1 - p= P

Step 2: learning from a training set

- We need to compute the following "prior" probabilities Pr(C = c) (global likeliness of a class) Pr(W = w | C = c) (likeliness of a feature for a class) For a training set T of objects let

 T_c be the set of documents from class c

 n_{wc} = #occurrences of word w in documents from T_c

 $n_c = \#$ occurrences of all words in documents from T_c

- Then we compute the priors as follows using **MLE** $Pr(C = c) := |T_c| / |T| note that \sum_c |T_c| = |T|$ $Pr(W = w | C = c) := n_{wc} / n_c note that \sum_w n_{wc} = n_c$ BEWARE: n_{wc} is zero quite often, see slide 14 Step 3: prediction based on the learned priors

- For a document D we want to compute for each class c $Pr(C = c | W_1 = w_1 n ... n W_m = w_m)$ UNI FREIBURG

where w_i is the value of the i-th feature (word) of D

- Using Bayes Theorem, we can prove (next slide) that $Pr(C = c | W_1 = w_1 n ... n W_m = w_m) = p'_C / P$ where $p'_C = Pr(C = c) \cdot \prod_{i=1,...,m} Pr(W_i = w_i | C = c)$ and $P = \sum_C p'_C$

Naive Bayes 7/10
$$\mathcal{P}_{V}(\mathcal{B},\mathcal{A}) = \mathcal{P}_{V}(\mathcal{B}) \cdot \mathcal{P}_{V}(\mathcal{A}|\mathcal{B})$$

= Proof of $\Pr(C = c \mid W_{1} = W_{1} n \dots n W_{m} = W_{m}) = p'_{c} / P$
- where $p'_{c} = \Pr(C = c) \cdot \prod_{i=1,\dots,m} \Pr(W_{i} = W_{i} \mid C = c)$
- and $P = \sum_{c} p'_{c}$
 $\mathcal{P}_{V}(C = c) W_{A} = W_{A} n \dots n W_{m} = W_{m}$
Bayes $\frac{\Pr(C = c)}{\Pr(C = c)} \cdot \frac{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
Eather $\frac{\Pr(C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{m} = W_{m})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} = W_{A} \dots n W_{M} = W_{M})}$
 $\frac{P_{V}(\mathcal{L}) = (C = c)}{\Pr(W_{A} \dots n W_{M} =$

UNI FREIBURG

Important implementation advice 1/2

- **Problem 1:** when only one of the Pr(W = w | C = c) is zero, the whole product is zero, and c will be out of the game Therefore, instead of $Pr(W = w | C = c) := n_{wc} / n_c$ do $Pr(W = w | C = c) := (n_{wc} + \epsilon) / (n_c + \epsilon \cdot #vocabulary)$ This is like adding every word ϵ times for every class For ES#10, take $\epsilon = 1/10$

Our docs are short, so a larger ϵ would add too much noise

Note: when Pr(C = c) = 0, the whole product is also zero, and c will be out of the game; but that is **ok**, since this only happens if there was no doc from class c in the training set

Naive Bayes 8b/10 $\log \frac{1}{2} e^{-\frac{1}{2} \log e^{-\frac{1}{2}}}$

- Important implementation advice 2/2 1000
 - Problem 2: A product of many small probabilities quickly becomes zero due to limited precision on the computer

Therefore, instead of $\Pi_i p_i$ compute $\Sigma_i \log p_i$

This also gives you the most likely class, because log is a monotone function

In particular, don't take exp in the end, since already exp(-1000) is zero on most computers

Naive Bayes 9/10

An small but complete example

- 6 documents, only words are a or b,

class A

class A

class B

class A

class B

Doc 1: · aba Doc 2: ·baabaaa Doc 3: *r*bbaabbab Doc 4: abbaa Doc 5: **abbb* Doc 6: **∗**bbbaab

$$\begin{array}{r} PREDICT:\\ \hline pay Doc: aab \to A \ ov \ B \ 2\\ class A: Prr(A) \cdot Prr(a|A)^2 \cdot Prr(b|A)\\ = P_A^{l} = \frac{1}{2} \cdot \left(\frac{2}{3}\right)^2 \cdot \frac{1}{3} = \frac{4}{2 \cdot 3^3}\\ class B: Prr(B) \cdot Prr(a|B)^2 \cdot Prr(b|B)\\ = \rho_B^{l} = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 \cdot \frac{2}{3} = \frac{2}{2 \cdot 3^3}\end{array}$$

2 classes: A and B TRAINING: $m_A = m_B = 3 \Rightarrow Pr(A) = Pr(B) = \frac{3}{6} = \frac{1}{2}$ max = 10, Mbx = 5 10+5=15 MaB = 6, MbB = 12 6+12=18 class B => $P_{r}(a|A) = \frac{10}{15} = \frac{2}{3}$ Pr (b|A) = 5 = 3 $P_{rr}(a|B) = \frac{6}{4} = \frac{1}{3}$ $P_{v}(b|B) = \frac{12}{18} = \frac{2}{3}$) => predict A =

2:=0 for

Pin EXAMPLE

UN FREI

Feature Design

– In our example: one feature for each word in the doc.

REI

- Alternative: feature vector of size M, M = #vocab.
- Other alternatives: pick all 3-grams, consider word positions, consider part-of-speech tags (verb, noun, ...)
- Feature Selection
 - Some words are not very predictive, like "and"
 - Considering them adds unnecessary noise to our decision
 - One simple remedy: remove very frequent (stop) words
 For ES#10, simply take all words though

How do we measure how good our classification is?

UNI FREIBURG

- For each class c we do the following
- Let $D_c = #$ documents from class c (ground truth)
- Let D'_c = #documents classified as c
- Then, as usual (note that these are per class)
 - Precision $P := |D'_c n D_c| / |D'_c|$
 - Recall $R := |D'_c n D_c| / |D_c|$
 - F-measure $F := 2 \cdot P \cdot R / (P + R)$
- Note that P = R = F = 100% if and only if $D_c = D'_c$

References

Further reading

Textbook Chapter 13: Text classification & Naive Bayes
 <u>http://nlp.stanford.edu/IR-book/pdf/13bayes.pdf</u>

UNI FREIBURG

- Advanced material on the whole subject of learning
 <u>Elements of Statistical Learning, Springer 2009</u>
- Wikipedia
 - <u>http://en.wikipedia.org/wiki/Naive Bayes classifier</u>
 - http://en.wikipedia.org/wiki/Bayes' theorem
 - <u>http://en.wikipedia.org/wiki/Maximum_likelihood</u>