
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 9, Tuesday December 17th, 2013
(Clustering, K-Means)

Overview of this lecture

 Organizational

– Your results + experiences with Exercise Sheet 8 (LSI)

– Continue LSI Demo "ALWIS" from last lecture

 Clustering

– Finding groups of "similar" objects / documents

– Algorithm: K-Means

– Correctness, Efficiency, Implementation Advice

Exercise Sheet 9: cluster 100K abstracts about people
(subset of our Wikipedia dataset) using K-Means

2

Experiences with ES#8 (LSI)

 Summary / excerpts last checked December 17, 16:00

– Getting used to Octave take time, but good tool to know

– The many Octave tips on the last slides were very useful

– Some of you preferred Matlab to Octave … fine!

– Many term pairs are not really "synonyms" … see next slide

– Better results, if stopwords (he, may, to, …) were dropped

– Thanks for the Weihnachtsvorlesung !

– Many of you are already busy with Christmas otherwise …

3

Your results for ES#8 (LSI)

 Main observations

– Many pairs are not really "synonyms":

may – refer, refer – to, she – her, football – league,

new - york, professor – university, party – member, …

– For k = 5, mostly pairs of frequent terms and from sports

– For k = 10, pairs from more different topics (e.g. politics)

– For k = 50, more different topics + some actual synonyms

batsman – cricketer, pitcher – baseball, singer – songwriter, …

Bottom line: amazing how this comes out of linear algebra

... but then again, the results aren't really that useful

4

Clustering

 Informal definition

– Given n elements from a metric space = there is a
measure of distance between any two elements

– Group the elements in clusters such that

Intra-cluster distances are as small as possible

Inter-cluster distances are as large as possible

Note: many ways to make this precise + it depends on
the application what is a good clustering and what not

5

K-Means 1/10

 Setting / Terminology

– The number of clusters k is given as part of the input

– Each cluster Ci has a so-called centroid μi, which is an
element from the metric space, but not necessarily (and
also not typically) an element from the input set

– For a given clustering C1, ..., Ck with cluster centroids
μ1, ..., μk define the residual sum of squares as

RSS = Σi=1,...,k Σx ϵ Ci |x – μi|
2

The sum of the squares of all intra-cluster distances

We will see: k-means finds a local minimum of the RSS

6

K-Means 2/10

 Algorithm

– Basic idea: greedily minimize the RSS in every step

– Initialization: pick a set of centroids

For ES9, pick k random documents from the input set

– Then alternate between the following two steps

(A) Assign each element to its nearest centroid

this can only decrease the RSS ... see slide 8

(B) compute new centroids as average of elems assigned to it

this too can only decrease the RSS ... see slide 9

– Let's first look at a demo ...

7

K-Means 3/10

 Proof of optimality of (A)

8

K-Means 4/10

 Proof of optimality of (B)

9

K-Means 5/10

 Convergence to local RSS minimum

– By what we have just proven, RSS stays equal or
decreases in every step (A) and every step (B)

– There are only finitely many clusterings

– So, eventually, the algorithm will converge ...

... provided that we do proper tie breaking in the
centroid assignment when two centroids are equally close

For ES9, simply prefer the centroid with smaller index

Otherwise we may cycle forever between different
clusterings with equal RSS

10

K-Means 6/10

 A local RSS minimum is not always a global one

11

K-Means 7/10

 Termination condition, options

– Stop when no more change in clustering

Optimal, but this can take a very long time

– Stop after a fixed number of iterations

Easy, but how to guess the right number?

– Stop when RSS falls below a given threshold

Reasonable, but RSS may never fall below that threshold

– Stop when decrease in RSS falls below a given threshold

Reasonable: we stop when we are close to convergence

For ES9, aim at a combination of small final RSS and
a fast running time … post results on the Wiki

12

K-Means 8/10

 Choice of a good k

– Idea 1: choose the k with smallest RSS

Bad idea, because RSS is minimized for k = n

– Idea 2: choose the k with smallest RSS + λ · k

Makes sense: RSS becomes smaller as k becomes larger

But now we have λ as a tuning parameter

But experience shows that for a given kind of application,
there is often an input-independent good choice for λ,
whereas a good k depends on the input

13

K-Means 9/10

 When is K-Means a good clustering algorithm

– K-Means tends to produce compact clusters of about
equal size

Indeed, it can be shown that K-Means is optimal when
the sought for clusters are spherical and of equal size

Whether it's good or not, k-means is used a lot lot lot
in practice, just because of it's simplicity

14

K-Means 10/10

 Alternatives

– K-Medoids

Maintain that centroids are elements from the input set

– Fuzzy k-means

Elements can belong to several clusters to varying
degrees ... this is sometimes called "soft clustering"

Note: LSI computed a kind of soft clustering

– EM-Algorithm (EM = Expectation-Maximization)

More sophisticated soft clustering that is optimal when
elements come from multi-variate Gaussian distribution

15

K-Means for Text Documents 1/6

 Representation

– We represent documents as vectors in term space

Each document = one column of our term-doc matrix

For ES9, two ways to represent this:

DENSE = Array<float> of size m, where m = #terms

SPARSE = Map<int, float> = only the non-zero scores

For efficiency reasons, after the first iteration, we will
further truncate the SPARSE representation to only
those entries with the highest scores, see slide 19

16

K-Means for Text Documents 2/6

 Construct from an inverted index

– This is easy if we store the documents in SPARSE
representation = Map<int, float>

Just go over the inverted lists one by one, and add the
term id – score pairs to the corresponding documents

For ES9, assign consecutive term ids 0, 1, 2, … as you
process the inverted lists (one per term), and remember
the terms in an Array<String> of size m

This is needed, so that in the end you can write out the
terms corresponding to the highest centroid entries

17

K-Means for Text Documents 3/6

 Distance between two documents

– We use the opposite of cosine similarity

dist(x, y) := 1 – cos angle(x, y) = 1 – x ● y / |x| · |y|

where x ● y is the dot product of x and y

Check: when x = y, then dist(x, x) = 0 … and when x
and y have no words in common then dist(x, y) = 1

For ES9, normalize all documents x such that |x| = 1
Then we can very easily compute dist(x, y) as 1 – x ● y

– Alternative: use Euclidean distance |x – y| or |x – y|2

Fact: |x – y|2 = 2 · (1 – x ● y) = 2 · dist(x, y)

18

K-Means for Text Documents 4/6

 Running time

– Let n = #documents, m = #terms, k = #clusters

– Each step (A) takes time ϴ(k · n · m)

Compute dist from each of the n documents to each of the
k cluster centroids, with ϴ(m) time per dist computation

– Each step (B) takes time ϴ(n · m)

Each of the n documents is added to one centroid vector,
and one vector addition takes time ϴ(m)

– Linear in each of n, m, k but product can become huge

19

K-Means for Text Documents 5/6

 Speed-up tricks for Step (A)

– Initially, our document vectors are sparse

– But centroid vectors become dense after some time

– Idea: after each iteration, truncate each document and each
centroid vector to the M entries with the highest scores

For ES9, choose M = 1000

If a vector has less than M non-zero scores, just do nothing

– A dist computation can then be done in time ϴ(M)

– Overall cost for Step (A) then reduces to ϴ(k · n · M)

Provided that we use a SPARSE representation

20

K-Means for Text Documents 6/6

 Speed-up tricks for step (B)

– Step (B) could be done in time O(n · M · log n) using a
merge of the document vectors in SPARSE representation

For ES9, use a DENSE representation to re-compute the
centroids

This takes time O(n · m) and is very simple and is as fast
as the (more complicated) merge, unless m is very large

Anyway, step (A) is the bottleneck with respect to runtime

21

References

 Further reading

– Textbook Chapter 16: Flat clustering

http://nlp.stanford.edu/IR-book/pdf/18flat.pdf

 Wikipedia

– http://en.wikipedia.org/wiki/Cluster_analysis

– http://en.wikipedia.org/wiki/K-means

– http://en.wikipedia.org/wiki/K-medoids

– http://en.wikipedia.org/wiki/EM_Algorithm

 Demo web application

– http://www.onmyphd.com/?p=k-means.clustering

22

