
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 8, Wednesday December 10th, 2013
(Synonyms, Latent Semantic Indexing)

Overview of this lecture

 Organizational

– Your experiences with ES#7 (cookies, UTF-8)

 Synonyms

– Yet another form of fuzzy search, but this time with no
syntactic similarity whatsoever:

search pizza, find lieferservice

– We will look at a fancy, fully automatic approach:

Latent Semantic Indexing (LSI)

– Exercise Sheet 8: use LSI to compute pairs of most
related terms from our example collection from ES1

You will learn a new tool for that today: Octave

Experiences with ES#7 (Cookies, UTF-8)

 Summary / excerpts last checked December 10, 15:00

– Nice course / topic, despite aversion against UTF-8

– Encoding stuff still confusing, but get's better bit by bit :-)

– Java is too intelligent for this sheet … well, and slow

– First 100 lines of code, then 10 lines of code … always ask!

– "Maybe I should watch the recording" … maybe, yes

– Does Prof. Bast use vim also for "real" coding … YES

– JavaScript / web server etc. interesting, but not really IR

I respectfully disagree, web apps are at the core of IR

– First C++ experiences segmentation fault

– Some of you don't read the feedback you get, please do!
3

Synonyms 1/4

 Motivation

– We have already seen wildcard search

Search uni* ... find university

– And we have seen error-tolerant search

Search uniwercity ... find university

– Today we want to look at synonym search

Synonym = another word meaning the same thing

Search university ... find college

Search bringdienst ... find lieferservice

Search cookie ... find biscuit

Note: typically no syntactic similarity whatsoever
4

Synonyms 2/4

 Solution 1: Maintain a thesaurus

– For each word, manually compile a list of synonyms

university: uni, academy, college, ...

bringdienst: lieferservice, heimservice, pizzaservice, ...

cookie: biscuit, confection, wafer, ...

– Two major problems with this approach:

1. This is laborious, and still notoriously out of date

2. Depends on context, which synonyms are appropriate

university award ≠ academy award

http cookie ≠ http biscuit

5

Synonyms 3/4

 Solution 2: Track user behavior

– Investigate whole search sessions

Track sessions with, guess what: COOKIES

– For example, many users searching for either of

pizza freiburg

bringdienst freiburg

then click on

Lieferservice Freiburg im Breisgau

This provides a hint that pizza and bringdienst and
lieferservice are related

6

Synonyms 4/4

 Solution 3: Automatic methods

– The text itself also tells us which words are related

– For example, consider pizza delivery webpages

They have similar contents (and style)

Some use the word Bringdienst, others use Lieferservice

Can we find out that these two words are related,
based on the similar context they appear in ?

– Latent Semantic Indexing (LSI) tries to do exactly
that, and it does it fully unsupervised / automatically

This is the topic of today's lecture !

7

Latent Semantic Indexing 1/9

 Our running example for this lecture

D1 and D2 and D3 are "about" surfing the web

D5 and D6 are "about" surfing on the beach

The words internet and web are synonyms here

The word surfing is polysemous here = it means
different things in different context

8

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0

web 1 0 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

Latent Semantic Indexing 2/9

 Problems with standard retrieval

Consider the query web surfing on that matrix

Let us use dot-product similarity, as in Lecture 2

Then e.g. sim(D3, Q) > sim(D2, Q) = sim(D5, Q)

But D2 seems just as relevant for the query as D3, only
that the word "internet" is used instead of "web"

9

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0

web 1 0 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

Q

0

1

1

0

Latent Semantic Indexing 3/9

 Conceptual solution

Add the missing synonyms to the documents

Then indeed: sim(D1, Q) = sim(D2, Q) = sim(D3, Q)

The goal of LSI is to do something like this automatically

10

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0

web 1 1 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

Q

0

1

1

0

Latent Semantic Indexing 4/9

 A simple but powerful observation

The modified matrix has column rank 2

That is, we can write each column as a (different) linear
combination of the same two base columns (B1 and B2)

Note 1: the original matrix had column rank 4
Note 2: one can prove that column rank = row rank

11

D1 D2 D3 D4 D5 D6

internet 1 1 1 1 0 0

web 1 1 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

B1 B2

1 0

1 0

1 1

0 1

Latent Semantic Indexing 5/9

 Matrix factorization

Equivalently: the 4 x 6 term-document matrix can be
written as a product of a 4 x 2 matrix with a 2 x 6 matrix

The base vectors B1 and B2 are the underlying "concepts"

The vectors D'1, …, D'6 are the representation of the
documents in the (lower-dimensional) "concept space"

12

D1 D2 D3 D4 D5 D6

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 2 1 1

0 0 0 1 1 1

B1 B2

1 0

1 0

1 1

0 1

D'1 D'2 D'3 D'4 D'5 D'6

1 1 1 1 0 0

0 0 0 1 1 1
= ●

Latent Semantic Indexing 6/9

 The goal of LSI

– Given an m x n term-document matrix A

– Given an integer k < rank(A)

– Then find a matrix A' of (column) rank k such that the
difference between A' and A is as small as possible

Formally: A' = argminA' m x n with rank k ǁA – A' ǁ

For the ǁ… ǁ we take the so-called Frobenius-norm

This is defined as ǁD ǁ := sqrt(∑ij Dij
2)

The reason for using this norm is purely technical: that
way, the math on the next slides works out nicely

13

Latent Semantic Indexing 7/9

 How to find / compute such an A'

– We first compute the so-called singular value
decomposition (SVD) of the given matrix A :

Theorem: for any m x n matrix A of rank r, there
exist U, S, V such that A = U · S · VT , and where

U is an m x r matrix with UT · U = Im the m x m identity matrix

S is a r x r matrix with entries only on its diagonal

V is an n x r matrix with VT · V = In the n x n identify matrix

Note: we can always choose S such that the diagonal
entries are positive and sorted (largest entry at 1, 1)

Then the decomposition is unique

14

Latent Semantic Indexing 8/9

 Using the SVD our task becomes easy

– Let A = U · S · VT be the SVD of A

– For a given k < rank(A) let

Uk = the first k columns of U now an m x k matrix

Sk = the upper k x k part of S now a k x k matrix

Vk = the first k columns of V now an n x k matrix

Note: then still Uk · Uk
T = Im and Vk · Vk

T = In
Let A' = Uk · Sk · Vk

T

Then A' is a matrix of rank k that minimizes ǁA – A' ǁ

15

Latent Semantic Indexing 9/9

 How to compute the SVD

– Easy to compute from the Eigenvector decomposition

… namely of the quadratic matrices A · AT and AT · T

– In practice, the more direct Lanczos method is used

This has complexity O(k · nnz), where k is the rank and
nnz is the number of non-zero values in the matrix

Note that for term-document matrices nnz << n · m

For ES8, just use built-in svds from Octave, see slide 27

16

Using LSI for better Retrieval 1/7

 Variant 1: work with A' instead of A

17

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0

web 1 0 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.9 0.9 1.1 -0.1 0.6 0.6

0.9 0.1 0.6 0.6 0.9 0.1

1.0 1.0 2.1 0.9 0.0 0.0

1.0 1.0 0.0 0.0 1.0 1.0

Our example A from the beginning best rank-2 approximation A'

Using LSI for better Retrieval 2/7

 Variant 1: work with A' instead of A

– Problem: A' is a dense matrix, that is, most / all of it's
m · n entries will be non-zero

Typically, both m and n will be very large, and then
already storing this matrix is infeasible

For ES8, m = 1000 and n = 8.2M m · n = 8.2B

18

Using LSI for better Retrieval 3/7

 Variant 2: work with Vk instead of with A

– Recall: Vk gives the representation of the documents in
the k-dimensional concept space

19

D1 D2 D3 D4 D5 D6

internet 1 1 0 1 0 0

web 1 0 1 1 0 0

surfing 1 1 1 2 1 1

beach 0 0 0 1 1 1

D'1 D'2 D'3 D'4 D'5 D'6

0.4 -0.5 0.3 -0.2 0.3 -0.2

0.7 0.0 0.3 0.6 0.3 0.6

Our example A from the beginning V2
T from the SVD of A

Using LSI for better Retrieval 4/7

 Variant 2: work with Vk instead of with A

– Problem 1: Vk is also a dense matrix

That is, most or all of its k · n entries are non-zero

Note: the original matrix A has m' · n non-zero entries,
where m' is the average number of words in a document

So storing Vk instead of A is ok if k ≤ m' or k ≈ m'

Note: no need for an inverted index then

20

Using LSI for better Retrieval 5/7

 Variant 2: work with Vk instead of with A

– Problem 2: we need to map the query to concept space

Let q be the query … note: |q| = #keywords typ. very small

Similarity (dot-product) of q with all documents is

qT · A' = (qT · Uk · Sk · Vk
T) = (Sk · Uk · q)T · Vk

T =: q'T · Vk
T

This q' = Sk · Uk · q is the query mapped to concept space

Then we need to compute dot-product with all docs in Vk
T

Since q' and Vk
T are dense, this requires time ~ n · k

In comparison: computing the similarities of q with the
original documents requires time O(n · |q|) and less

21

Using LSI for better Retrieval 6/7

 Variant 3: expand the original documents

– In Variant 2, we have transformed both the query and
the documents to concept space

– LSI can also be viewed as doing document expansion
in the original space + no change in the query

Namely, let T = Uk · Uk
T this is an m x m matrix

Then, A' = T · A

22

Using LSI for better Retrieval 7/7

 Variant 3: expand the original documents

– Here is some intuition for T, assuming 0 or 1 entries

In practice, we can achieve this, by setting all entries
in T above a certain threshold to 1, and all others to 0

For ES8, output the 100 term pairs with the largest values

23

Di
1

0

1

0

internet 1 1 0 0

web 1 1 0 0

surfing 0 0 1 0

beach 0 0 0 1

in
te

rn
et

w
eb

su
rf

in
g

be
ac

h

● =

D'i
1

1

1

0

Octave 1/6

 A script language for numerical computation

– GNU's open source version of the proprietary Matlab

– Makes numerical computations easy, which would
otherwise be a pain to use in Java / C++

In particular: computations with matrices and vectors

– Also comes with an interactive shell, see next slide

– Language has C-like commands (printf, fopen, ...)

– Still it's a script language, and correspondingly slow

– The built-in functions (like svds) are quite fast though

– Download and Doc.: http://www.gnu.org/software/octave

24

Octave 2/6

 The Octave interactive shell + help

– Use pretty much like a Bash shell, in particular:

Arrow : previous command

Arrow : next command

CTRL+R : search in history

CTRL+A : go to beginning of line

CTRL+E : go to end of line

CTRL+K : delete from cursor position to end of line

– Interactive help with help <function name>

– Google for Matlab, not Octave, the basic stuff is identical

matlab read sparse matrix
25

Octave 3/6

 File handling

– Open a file with fopen just like in C, e.g.

input_file = fopen("input.txt", "r");
output_file = fopen("output.txt", "w");

– Read from text file with load or textscan, e.g.

tmp1 = load("stupid.matrix");
tmp2 = textscan(input_file, "%s");

– Write text file with fdisp, e.g.

fdisp(output_file, "stupid result");

26

Octave 4/6

 Sparse matrices

– Use spconvert to convert from explicit sparse-matrix
format (Ex. 8.1) to the internal sparse-matrix format

tmp = load("stupid.matrix"));
A = spconvert(tmp);
clear tmp;

– Compute the k-truncated SVD for a sparse matrix:

[U, S, V] = svds(A, k);

Note: the running time of this is proportional to k

– In comparison, for the full SVD for a dense matrix:

[U, S, V] = svd(A);

27

Octave 5/6

 Some more useful commands

– Manually create the matrix from our running example

A = [1 1 0 1 0 0; 1 0 1 1 0 0; 1 1 1 2 1 1; 0 0 0 1 1 1];

Note: if you omit the semicolon in the end or write a
comma, the result will be printed on the screen

– Flatten a matrix to a vector and then sort it:

V = reshape(A, size(A)(1) * size(A)(2));
Vs = sort(V, 'descend');

– Get indices + value of all entries with a certain property:

[I, J, V] = find(A == 1);

28

Octave 6/6

 And yet more useful commands

– Get a portion of a matrix or vector

Uk = U(:, 1:k); // First k columns of U.

Note: matrix / vector indices in Octave start at 1, not 0

– Multiply a matrix with its transpose

T = Uk * Uk';

Note: for the transpose use ' and not ^T or sth like that

29

References

 Further reading
– Textbook Chapter 18: Matrix decompositions & LSI

http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

– Deerwester, Dumais, Landauer, Furnas, Harshman

Indexing by Latent Semantic Analysis, JASIS 41(6), 1990

 Wikipedia
– http://en.wikipedia.org/wiki/Latent_semantic_indexing

– http://en.wikipedia.org/wiki/Singular_value_decomposition

– http://www.gnu.org/software/octave

– http://en.wikipedia.org/wiki/GNU_Octave

30

