
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 7, Tuesday December 3rd, 2013
(Cookies, CORS, UTF-8)

Overview of this lecture

 Organizational

– Your experiences with ES#6 (web application)

 CORS, Cookies, UTF-8

– More practically relevant web app stuff:

Cookies: store information across web sessions

CORS: using resources from other sources

UTF-8: how to encode characters like ä or € or 谢

Exercise Sheet 7: add a feature to your web app using
cookies + convert ISO-8859-1 input to UTF-8

Experiences with ES#6 (search web app)

 Summary / excerpts last checked December 3, 14:30

– Nice exercise sheet

– Many of you had no prior experience with HTML, JavaScript,
etc … therefore quite time-consuming to get used to it

– Many of those with more experience spent quite some time on
playing around and trying things

Let's have a look at two examples today + more next week

– Thanks Björn for the master solution for ES#5 … indeed !

– Exercise 1: makes no sense / takes hours / better use a library

Hmm, if it takes hours, then you can still learn a lot

Using a library, you (1) don't realize how simple HTTP
actually is, and you (2) don't learn all the little details

3

Cookies 1/5

 Basic mechanism

– A cookie is simply a string associated with a web page
that is stored on the client's computer

Each client has it's own cookie

Typically used for user data and preferences

– A cookie can contain any contents, but the convention is
that it contains a sequence of key-value pairs, separated
by semicolons, for example:

user=cookie-monster; prefers=kekse

– Implementation in JavaScript is very simple, just read and
write this string via the variable document.cookie

4

Cookies 2/5

 Adding key-value pairs to a Cookie

– To add a key-value pair, just write

document.cookie = "user=cookie-monster";

– Multiple assignments add to the string … weird but true

document.cookie = "user=cookie-monster";
document.cookie = "prefers=kekse";

Cookie string: user=cookie-monster; prefers=kekse

– To overwrite the value for a key, just write again

document.cookie = "prefers=kekse";
document.cookie = "prefers=kruemel";

Cookie string: prefers=kruemel

5

Cookies 3/5

 Getting the value for a particular key

– In raw JavaScript, need some string processing:

var cookies = document.cookie.split(";");
for (var i = 0; i < cookies.length; i++) {

var args = cookies.replace(/\s/g,"").split("=");
if (args[0] == "user") alert("Hi " + args[1] + " !!!");

}

6

Cookies 4/5

 Different kinds of cookies

– Chocolate chip cookie

Accidentally developed by Ruth Wakefield in 1930

– Session cookie … lasts as long as your browser is open

user=cookie-monster

– Persistent cookie … lasts until the specified date

user=cookie-monster; expires=Wed 04 Dec 2013 17:45

– Third-party cookies … from JavaScript from other domains

Beware: these often give access to sensitive information

In the JavaScript Console (Ctrl+Shift+J in Chrome), easily
see and manage all Cookies under Resources  Cookies

7

Cookies 5/5

 In jQuery working with Cookies is super-easy

– Setting a cookie

$.cookie("user", "cookie-monster");

– Value of a cooke

var user = $.cookie("user");

– Removing a cookie

$.removeCookie("user");

– Cookie with expiry date (10 days from now)

$.cookie("user", "cookie-monster", { expires: 10});

8

CORS 1/4

 Cross-Site-Scripting (XSS)

– Principle: inject malicious JavaScript code into web page

– Example 1: enter JavaScript into search box

Click me!

– Example 2: send someone a mail with a link

...index.php?user=guest<script>alert("Ha!")</script>

– Example 3: post to forum with some script in it

I have a question on Exercise Sheet 7.
<script>... JS code to send me user info by mail ...</script>

Note: The <script>...</script> will not show on the website,
but code will be executed by any client viewing the post

9

CORS 2/4

 The same-origin-policy

– Domain + port of client and server URL must be identical

http://etna.cs.uni-freiburg.de:8888/search.html

http://etna.cs.uni-freiburg.de:8888/?q=zurich

– To understand why, consider the following scenario:

An application somehow managed to copy your session
cookie for Facebook and redirect you to www.evil.com

Without the same-origin-policy, the evil site could now
use that cookie to log into your Facebook account and
do all kinds of funny (or not so funny) stuff

With the same-origin-policy it cannot

10

CORS 3/4

 Exceptions to the Same-Origin-Policy

– JavaScript can be loaded from anywhere

That way we could use jQuery without downloading it

<script src="http://code.jquery.com/jquery1.10.2.js">

– There are applications where it is actually desirable that
everybody (or many people) can access then

For example, our backend for query suggestions

Or an API to a public database

11

CORS 4/4

 CORS = Cross-Origin Resource Sharing

– Principle: the server explicitly specifies which web sites
may use the results it returns

– The implementation is very simple:

Modern browsers send the following request header

Origin: http://<host name>:<port>

Depending on that header, or independent of it, the
server can then send a response header like this:

Access-Control-Allow-Origin: http://<host name>:<port>

Browser then uses the result only when the two agree

12

Unicode 1/7

 Motivation

– To represent text in binary, we need a standard for how to
represent the characters of the alphabet, numbers, etc.

– For a very long time, this standard was ASCII :

1 Byte per symbol = can represent 256 different symbols

– Obviously there are more than 256 symbols in the world

Chinese alone has (tens of) thousands of different symbols

13

Unicode 2/7

 Solution before Unicode

– Use the ASCII codes 0 – 127 for common symbols,
which (almost) everybody needs

a-z A-Z 0-9 () [] { } , . : ; " ' …

ASCII codes 0 – 31 used for control characters

– For the ASCII codes 128 – 255, have (many) different
variants, depending on the context

For example, ISO-8859-1: use the codes to encode all
the funny characters from most European languages

à á â ã ä å ç è é ë ì í î ï ð ñ ò ó ô õ ö ø …

– Problem: if you need more than one variant, you need
to switch the encoding in the middle of the document

14

Unicode 3/7

 The Unicode solution

– Simply assign a unique number, called code point, to
(almost) every character / symbol in the world, e.g.

a : 97 (hex = 61)
A : 65 (hex = 41)
ä : 228 (hex = E4)
α : 945 (hex = 03B1)
€ : 8364 (hex = 20AC)

: 128584 (hex = 1F648)

– Unicode knows 1,114,112 code points (hex: 0 .. 10FFFF)

Note: 1 Byte not enough, and 2 Bytes also not enough

15

Unicode 4/7

 UTF = Unicode Transformation Standard

– There are different schemes for how to actually
represent these code points in binary

UTF-32: always use 4 bytes per code point
obviously enough for all 1,114,112 known code points

UTF-16: use 2 bytes for the common code points,
and 4 bytes for the others … used for String in Java

UTF-8: use 1 byte for the very common code points,
and 2 or 3 or 4 bytes for the others … see next 2 slides

UTF-16 and UTF-8 are variable-byte encodings

16

Unicode 5/7

 Details of UTF-8

– 1 Byte: Code point in [0, 127] = xxxxxxx

UTF-8 code: 0xxxxxxx 7 Bits

– 2 Bytes: Code point in [128, 2047] = yyyxxxxxxxx

UTF-8 code: 110yyyxx 10xxxxxx 11 Bits

– 3 Bytes: Unicode in [2048, 65535] = yyyyyyyyxxxxxxxx

UTF-8 code: 1110yyyy 10yyyyxx 10xxxxxx 16 Bits

– 4 Bytes: Unicode in [65536, 221 - 1] = zzzzzyyyyyyyyxxxxxxxx

UTF-8 code: 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx 21 Bits

In principle, could continue with 5-byte and 6-byte sequences,
but UTF-8 stops here, since 221 ≈ 2M is enough RFC 3629

17

Unicode 6/7

 UTF-8 has the following nice properties

– ASCII compatible = a string of characters with ASCII
codes < 128 is the same in ASCII as in UTF-8

So old C / C++ code only fails on the special characters

– ISO-8859-1 characters (ä ã â …) with code point 1xyyyyyy
have the 2-byte UTF-8 encoding 1100001x 10yyyyyy

You may want to make use of this for Exercise 7.3

– Only rarely used characters need more than 2 bytes

– Easy to decode: codes start and end at byte boundaries

– Can decode starting from anywhere within a string

Just move left to the next byte not starting with 10

18

Unicode 7/7

 Some more properties of UTF-8

– In a multi-byte UTF-8 character all bytes are ≥ 128, and
vice versa such bytes occur only for multi-byte characters

– The number of leading 1s in the first byte of a multi-byte
character is equal to the number of bytes of its code

– For every Unicode in [0, 221 - 1] there is exactly one
valid UTF-8 multi-byte sequence

– But vice versa not all multi-byte sequences are valid UTF-8

– For example 1100000x 10xxxxxx is not valid

Should be encoded with 1 byte: 0xxxxxxx

19

URL encoding and decoding

 Many characters not allowed in a URL

– Only: a-z A-Z 0-9 $ % / - _ . + ! * … and a few more

In particular: no space, and also no ä ã â …

– Arguments of GET request are part of the URL

In particular, the ?q=... part of your web app for ES6

– Special characters are encoded as follows (by example)

If encoding of web page is UTF-8

ä : UTF-8 code C3A4  URL-encoded as %C3%A4

For decoding, do just the reverse … Exercise 7.2

If encoding of web page is ISO-8859-1:

ä : ISO-8859-1 code E4  URL-encoded as %E4
20

Implementation Advice

 For Exercise Sheet 7

– To view the byte-wise contents of a file, independent
of it's encoding use the Linux tool xxd or xxd –b

Inside an IDE, Text Editor, or Console what you see is
already an interpretation of the contents of the file,
assuming a certain encoding, e.g. UTF-8 or ISO-8859-1

– In Java, when you read the contents of a file into a
String, implicit conversion happens

By default, Java assumes the encoding of the shell from
which you have started the program

For ES7, therefore read into a byte[] array first

21

References

 CORS

– http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

– http://en.wikipedia.org/wiki/Cross-site_scripting

 Cookies

– http://en.wikipedia.org/wiki/HTTP_cookie

– http://www.w3schools.com/js/js_cookies.asp

 UTF-8, URL-encoding and -decoding

– http://en.wikipedia.org/wiki/UTF-8

– http://www.utf8-chartable.de

– http://www.w3schools.com/tags/ref_urlencode.asp

22

