
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 6, Tuesday November 26th, 2013
(How to build a web application)



Overview of this lecture

 Organizational

– Your experiences with ES#5 (error-tolerant search)

 How to build a web application

– Everything you need to know about:

HTML, HTTP, MIME Types, Sockets, CSS, JavaScript,
DOM, AJAX, JSON, jQuery, jQuery UI, CORS

I will explain all these by the example of a toy web app, 
which we will build together live today

Exercise Sheet 6: build a web app that displays error-
tolerant prefix matches (ES5) as you type your query

2



Experiences with ES#5 (error-tolerant search)

 Summary / excerpts       last checked November 26, 16:00

– Most: again time-consuming, but easier than Gollum

– Many of the Java people had RAM problems

Solution 1: ArrayList  Björn's dynamic int array

Solution 2: work with only a part of the input

– "Never program on a Friday"

– Not clear how to implement multi-way union using PQ

Code suggestions on the Forum + simpler alternatives

– Gap-encoding the q-gram index reduces space to half

– Would make sense to incorporate PED into ranking … yes!

e.g. for query uniwers rank uniwerse before universe
3



How to build a web application

 Components

– Server that delivers the web pages

– Server that answers the queries

– The contents of the web pages

– The code that runs as part of the web pages and 
communicates with the server that answers queries

 Implementation

– Many technologies behind this, each quite complex 

– But the basic principle behind each is easy to understand

In the following, brief motivation + example for each

Along with that we will code a toy web application live
4



HTML = HyperText Markup Language

 Motivation

– Language for specifying the content of a web page

Including style information (layout, font, colors)

Including code that dynamically changes the content

 Implementation

– XML-like language, example tags:

<h1>…</h1> Level-1 heading
<p> … <p> A paragraph of text
<input> … </input> Input field
<script> … </script> Include JavaScript code

5



HTTP = Hypertext Transfer Protocol

 Motivation

– How to transfer data between a web server (e.g. serving 
web pages) and a browser (e.g. requesting web pages)

 Implementation

– Protocol for basic requests quite simple, e.g. HTTP GET

Request line GET /search.html HTTP/1.1 …

Answer lines HTTP/1.1 200 OK
Content-Length: 653
Content-Type: text/html

… the 653 bytes of the content …

– There are MANY more request types and headers

For ES6, just implement enough to make the browser happy
6



Content Types aka MIME Types

 Motivation

– Standard names for the different types of content sent 
across the internet

– MIME = Multipurpose Internet Mail Extensions

 Examples

– Plain text: text/plain

– HTML: text/html

– CSS: text/css

– JavaScript: application/javascript

– JSON: application/json

7



Socket communication

 Motivation

– Two programs communicating with each other

– Possibly (and often) on two different machines

– In particular: a program running as part of a web page  
with a program answering complex queries

 Implementation

– Socket = machine + port … different comm, different ports

– In C++ easy with boost::asio (asio = asynchronous IO)

– In Java easy with java.net.Socket / java.net.ServerSocket

Code for socket communication is provided on the Wiki,
in both Java and C++ … yes, we are very nice

8



CSS = Cascading Style Sheets

 Motivation

– Specify style information (layout, font, color, etc) 
independent from the contents of the page

 Implementation 

– For example, all level-1 headings in blue and boldface

h1 { color : blue; font-weight: bold }

– Well-defined priority of rules, in case several of them 
apply to the same element of a page

Often the case, hence the "cascading" in the name

Intuitively: the most "specific" rule wins

9



JavaScript

 Motivation

– A language that runs as part of a web page

For dynamically changing its contents (textual or 
otherwise) in response to user actions

 Implementation

– Syntax similar to Java, hence the name

– A script language = interpreted line by line = slow

– Variables are untyped

– Supports object orientation

10



DOM = Document Object Model

 Motivation

– Well-defined scheme for how to address elements in a 
web page, in particular by JavaScript code

 Implementation

– For example: get the contents of an element with a 
particular id on the web page

In the HTML:

<div id="result">NO RESULT YET</div>

In the JavaScript:

document.getElementById("result").innerHTML = "42";

11



AJAX

 Explanation

– AJAX = Asynchronous JavaScript and XML

– General name for communication between the JavaScript 
running within a browser and some server elsewhere, e.g.

xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {
response = xhr.responseText;
… process the response … }}

xhr.open("GET", "<url>", true);
xhr.send();

– In jQuery (see slide 14), this is a nice and simple two-liner

12



JSON

 Motivation

– The result from a computation is often a complex object, 
e.g. an array or associative array

– If send as a mere string, we need code to parse that
string on the JavaScript side

– JSON is content in the form of ready-to-use JavaScript 
code

 Example

– An associative array with two keys (from our toy web app)

{ "numVowels" : 5, "numConsonants" : 13 }

13



jQuery

 Motivation

– Raw JavaScript can be quite cumbersome and ugly

– jQuery is a JavaScript library with convenient functions for 
all the common stuff

 Example: do something after each keypress

– With raw JavaScript, you need something like this:

HTML:   <input id="query" onkeypress="myFunction()"/>

JavaScript:    myFunction() { /* … code here … */ } 

– With jQuery, nice separation of contents and code:

HTML: <input id="query">

JavaScript:   $("#query").keypress(function() { … })

14



jQuery UI

 Motivation

– Realizing (in particular: drawing) complex UI elements in 
raw JavaScript is (again) very cumbersome and ugly

– jQuery UI is a library with convenient and easy-to-use 
functions for all the typical UI elements

 Example: autocompletion from fixed set of strings

– HTML: <input id="query">

– JavaScript: $("query").autocomplete({
source: [ … array of strings from 

which to autocomplete … ]
});

15



Implementation Advice

 Debugging web apps is complex

– Asynchronicity is a bitch

– Use the "JavaScript console" from your browser

Google Chrome: just type Ctrl+Shift+J

Firefox: install the Firebug addon

Internet Explorer: don't use it

Very useful information about: which requests are 
launched when with which headers, responses and their 
headers, JavaScript errors, a console for logging, etc.

16



References

 Relevant Wikipedia articles  (in order of appearance)

http://en.wikipedia.org/wiki/HTML

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

http://en.wikipedia.org/wiki/Internet_media_type

http://en.wikipedia.org/wiki/Network_socket

http://en.wikipedia.org/wiki/Cascading_Style_Sheets

http://www.w3schools.com/js

http://en.wikipedia.org/wiki/Document_Object_Model

http://en.wikipedia.org/wiki/Ajax_(programming)

http://jquery.com/ http://jqueryui.com/

17


