
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 5, Tuesday November 19th, 2013
(Fuzzy Search, Edit Distance, q-Gram Index)

Overview of this lecture

 Organizational

– Your experiences with ES#4 (compression and entropy)

 Fuzzy search

– So far, exact matches: type university, find university

– Fuzzy search: type uni or uniwercity, find university

– Similarity measure: (prefix) edit distance

– New data structure: q-gram index

Exercise Sheet 5: implement error-tolerant prefix search
using a q-gram index and prefix edit distance

2

Experiences with ES#4 (compr. / entropy)

 Summary / excerpts last checked November 19, 02:00

– Harder and more time-consuming than previous sheets

We tried hard to keep the effort reasonable for you though

Seems the bit fiddling cost many of you some time

– Wrong hint in Exercise 2 cost some of you time

Needed: 1 – p ≤ ep ; Provided: 1 – p ≥ ep/2

SORRY! Was corrected on the forum though

– Golomb  Gollum … exactly !

3

Results for ES#4 (compression / entropy)

 Summary

– Compression ratio (G = Gollum, VB = Variable-Byte)

On the long dense list ("american", 165K elements)

G compresses almost twice as good as VB (ratio 7.9 vs 4.0)

On the short sparse list ("freiburg", 310 elements)

G compresses only slightly better than VB (ratio 2.3 vs. 2.1)

– Time for compression / decompression

G compression ~ 10 times slower than VB

G decompression ~ 3 times slower than VB

Use Gollum only when you don't get the ring otherwise

4

Fuzzy Search 1/7

 Motivation and problem setting

– Problem setting in the lectures so far:

Given a query, find relevant documents for that query

– Problem setting in the lecture today:

Given a query, or part of a query, suggest a "matching"
string or strings from a given (typically large) input set

Given: uni match: university (prefix search)

Given: uni*ty match: university (wildcard search)

Given: univerty match: university (error-tolerant search)

Of course, there could be more than one match, for
example, uni*ty also matches unidimensionality

5

Fuzzy Search 2/7

 Some possible origins for the input set

– Popular queries extracted from a query log

This is the basis of Google's auto-completion feature

– Words + common phrases from a text collection

Extracting common phrases from a given text collection
is an interesting problem by itself, however, not one we
will deal with in this course

– A list of names of entities (people, places, things, …)

Your input set for ES5 will be a selection of ~ 8 million
entity names from Freebase (www.freebase.com)

6

Fuzzy Search 3/7

 Matching vs. Search

– Once we have found a "matching" string or strings,
we can do an exact search like before, for example:

1. Type: uni

2. Match: universe, university

3. Search: universe OR university

In todays lecture, we will only look at parts 1 + 2
= finding matching strings in the input set

The search part is also interesting, when the number of
matching strings is very large; then a simple OR of a lot
of strings will be too slow and we need better solutions

7

Fuzzy Search 4/7

 Simple solution

– Go over all strings in the input set, and for each check
whether it matches

– This is what the Linux commands grep and agrep do

grep –x uni.* <file>

grep –x un.*ity <file>

agrep –x –2 univerty <file>

All matching lines in <file> will be output

The option –x means match whole line (not just a part)

The option –2 means allow up to two errors

8

Fuzzy Search 5/7

 How to check whether a single string matches

– Given a query q and a string s

– Prefix search: easy-peasy

Just compare q and the first |q| characters of s

– Wildcard search: also easy if only one *

If q = q1*q2, check that |s| > |q1| + |q2| and then
compare the first |q1| characters of s with q1 and the
last |q2| characters of s with q2

– Error-tolerant search: not so easy

We need to define a similarity measure between strings, and
then compute it; we will take edit distance … slides 11 - 17

9

Fuzzy Search 6/7

 Complexity

– The time complexity is obviously n · T, where

n = #words, T = time for checking a single string

– For the searches from the previous slide T ranges from:

0.1µs for wildcard search to 1µs for error-tolerant search

– In search, we always want interactive query times

respond times feel interactive until about 100ms

– So the simple solution is fine for up to 100K - 1M words

– For larger input sets, we need to pre-compute something

We will build a so-called q-gram index … slides 18 – 24

10

Fuzzy Search 7/7

 For prefix search, there is a faster solution

– Assume the input strings are in sorted order:

Then we can find the first match for a prefix with
log2 n string comparisons using a binary search

– This is fast enough also for very large values of n

Example: n = 1 Tera = 1012 ≈ 236

Then: log2 n = 36

11

about
aware
banks
base
based
bases
basics
basis
bruno
cache
call

cases
…

Edit distance 1/7

 Also known as Levenshtein distance (1965)

– Definition: for two strings x and y

ED(x, y) := minimal number of tra'fo's to get from x to y

– Transformations allowed are:

insert(i, c) : insert character c at position i

delete(i) : delete character at position i

replace(i, c) : replace character at position i by c

12

Vladimir
Levenshtein

*1935, Russia

Edit distance 2/7

 Some notation

– The empty word is denoted by ε

– The length (#characters) of x is denoted by |x|

– Substrings of x are denoted by x[i..j], where 1 ≤ i ≤ j ≤ |x|

 Some simple properties

– ED(x, y) = ED(y, x)

– ED(x, ε) = |x|

– ED(x, y) ≥ abs(|x| - |y|) abs(z) = z ≥ 0 ? z : -z

– ED(x, y) ≤ ED(x[1..n-1], y[1..m-1]) + 1 n = |x|, m = |y|

13

Edit distance 3/7

 Recursive formula

– For |x| > 0 and |y| > 0, ED(x, y) is the minimum of

(1a) ED(x[1..n], y[1..m-1]) + 1

(1b) ED(x[1..n-1], y[1..m]) + 1

(1c) ED(x[1..n-1], y[1..m-1]) + 1 if x[n] ≠ y[m]

(2) ED(x[1..n-1], y[1..m-1]) if x[n] = y[m]

– For |x| = 0 we have ED(x, y) = |y|

– For |y| = 0 we have ED(x, y) = |x|

14

Edit distance 4/7

 Proof sketch

– Consider a sequence of k = ED(x, y) tra'fo's from x to y

– There is always a monotone such sequence … verify

Monotone = positions of operations never decrease,
and, except for successive deletions, strictly increase

– Consider the last tra'fo σk : z  y in this sequence:

If σk appends a char to z ... then ED(x, y) = (1a)

If σk removes last char of z ... then ED(x, y) = (1b)

If σk replaces last char of z ... then ED(x, y) = (1c)

If σk leaves last char of z as is ... then ED(x, y) = (2)

15

Edit distance 5/7

 Algorithm for computing ED(x, y)

– The recursive formula from Slide 11 naturally leads to
the following dynamic programming algorithm

– Takes time and space Θ(|x| · |y|)

16

Edit distance 6/7

 An interesting variation: prefix edit distance

– The prefix edit distance between x and y is defined as

PED(x, y) = miny' ED(x, y') where y' is a prefix of y

– For example

PED(uni, university) = 0 … but ED = 7

PED(uniwer, university) = 1 … but ED = 5

Important for error-tolerant query suggestions as you
know them from Google

There you get error-tolerant completions as you type,
that is, already for prefixes of your query

17

Edit distance 7/7

 Computation of the PED

– Compute the entries of the |x| · |y| table, just as for ED

– The PED is just the minimum of the entries in the last row

– Important optimization when |x| << |y| and you only
want to know if PED(x, y) ≤ δ for some given δ:

Enough to compute the first |x| + δ columns … verify!

18

q-Gram Index 1/7

 Index construction

– Definition: q-grams of a string = all substrings of length q

– For wildcard search, add a $ before and after each string

For error-tolerant search, we will add the $s a little differently

– Example: the 3-grams of $university$ are

$un, uni, niv, ive, ver, ers, rsi, sit, ity, ty$

– For each q-gram store an inverted list of the strings (from
the input set) containing it, sorted lexicographically

$un : unanimous, unexpected, university, unnötig, …

ers : aargauerstraße, …, university, unverständlich, …

As usual, store ids of the strings, not the strings themselves
19

q-Gram Index 2/7

 Space consumption

– For q = 3, the number of q-grams for x is exactly |x|

Each x thus contributes |x| ids to the inverted lists

– The total number of ids in the lists is hence 4 · N, where
N is the size of the input file

– We also need to store the input strings in an array, so that
we can map ids back to strings again

– Hence: total size = five times the input file

Note that we could reduce this using compression

For ES5, it is fine if you store the lists uncompressed

20

q-Gram Index 3/7

 Wildcard search (single *)

– Example query: un*ity

– Generate all q-grams from query: un, ity, ty (q=3)

– Take intersection of inverted lists for these q-grams

– Each matching string from the input set will be included

If it matches, it also contains the q-grams from the query

– However, not all strings in the intersection are matches

For example: universityfaculty

– Go over each string in intersection and check if it matches

In the simple algorithm, we do this for every input string

21

q-Gram Index 4/7

 Error-tolerant search, Preliminaries

– Consider x and y with ED(x, y) ≤ δ

– Intuitively: if x and y are not too short, and δ is not too
large, they will have one or more q-grams in common

– Let x' and y' be x and y with q – 1 times $ left and right

Otherwise, fewer q-grams containing the first / last letters !

– Example: |x| = 5, |y| = 4, q = 3, δ = 2

x' = $$KILL$$ 3-grams: $$K $KI KIL ILL LL$ L$$

y' = $$BILLY$$ 3-grams: $$B $BI BIL ILL LLY LY$ Y$$

Number of q-grams in common is: comm(x', y') = 1

Lemma: comm(x', y') ≥ max(|x|, |y|) – 1 – (δ – 1) · q
22

q-Gram Index 5/7

 Error-tolerant search, Proof sketch of Lemma

– Lemma: comm(x', y') ≥ max(|x|, |y|) – 1 – (δ – 1) · q

Repetition of example: |x| = 5, |y| = 4, q = 3, δ = 2

x' = $$KILL$$ 3-grams: $$K $KI KIL ILL LL$ L$$

y' = $$BILLY$$ 3-grams: $$B $BI BIL ILL LLY LY$ Y$$

– Proof sketch:

Consider the longer string, which has max(|x|, |y|) + q – 1
q-grams (because of the left and right $ padding)

Then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos affect at most δ · q q-grams

23

q-Gram Index 6/7

 Error-tolerant search, Query Algorithm

– Given a query x and a q-gram index for the input strings

– Compute q-grams of x' and fetch their inverted lists

For example: x = BILL, x' = $$BILL$$

Fetch lists for: $$B , BI , BIL , ILL , LL , L$$

– Compute the union of these inverted lists + beware this:

Keep duplicates in the union or maintain a count for each id

– For each elem y with count ≥ max(|x|, |y|) – 1 – (δ – 1) · q :

Compute the actual ED using the dynamic programming algo

For the ids with lower counts, we know that ED > δ

24

q-Gram Index 7/7

 Error-tolerant prefix search

– Use the same algorithm, but with a different bound

– Assume that PED(x, y) ≤ δ

– Let x' and y' be x and y with q – 1 times $ to the left only

– Lemma: then comm(x', y') ≥ |x| – q · δ

Note that for δ = 1, this is ≥ 1 only for |x| > q

– Proof sketch: consider x, which has exactly |x| q-grams,
then one tra'fo (insert / delete / replace) changes at most q
q-grams, and hence δ tra'fos change at most δ · q q-grams

25

References

 In the Raghavan / Manning / Schütze textbook

Section 3: Tolerant Retrieval, in particular:

Section 3.2: Wildcard queries

Section 3.3: Spelling correction

 Relevant Wikipedia articles

http://en.wikipedia.org/wiki/N-gram

http://en.wikipedia.org/wiki/Approximate_string_matching

http://en.wikipedia.org/wiki/Levenshtein_distance

26

