
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 4, Tuesday November 12th, 2013
(Compression and Entropy)

Overview of this lecture

 Organizational

– Your results and experiences with ES#3 (List Intersection)

 Compression

– Motivation: saves space (obviously), but also query time

– Concrete schemes: Elias, Golomb, Variable-Byte

– Shannon's theorem: optimal compression = entropy

– Exercise Sheet 4: prove optimality of Golomb encoding
for gap-encoded inverted lists + verify experimentally

2

Experiences with ES#3 (list intersection)

 Summary / excerpts last checked November 12, 15:00

– Gallop not hard to understand + exercise quite feasible

– Many of you spent most of their time on debugging

Don't worry, this will get better with practice !

– Surprised that the (theoretically optimal) Gallop is so slow

3

Results for ES#3 (list intersection)

 Main observations + discussion

– Let R be the ratio between the two list lengths

– For R=2 (university german), simple is unbeatable

– For R=13 (university berlin), simple is still hard to beat

– For R=198 (university freiburg), gallop is faster

– Reason: gallop asymptotically faster than simple, but more
complex code = larger constant factors in the running time

4

Compression 1/4

 Motivation
– A search engine index can become very large

Understand: total number of index items = total size of
the text collection in words

– Index in memory:

Then compression saves memory (obviously)

Also note that an index might be to large to fit into
memory without compression, and with compr. it does

Fitting in memory is good because reading from memory
is (much) faster than reading from disk

5

Compression 2/4

 Motivation
– Index on disk:

Then compression saves disk space (obviously)

But is also saves query time:

Reading an inverted list from disk takes a lot of time

Assume 50 MB / sec and an inverted list of size 50 MB

Then reading that list from disk takes 1 second

If we compress it to 10 MB, reading takes 0.2 second

We need to decompress it then, but even if that takes
0.3 seconds, we have still gained a factor of two !

6

Compression 3/4

 Compressing inverted lists

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– Numbers can become very large … so we need 4 bytes
to store each, for web search even more

– But we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– This is called gap encoding

– Works as long as we process the lists from left to right

– Now we have a sequence of mostly small numbers

– We need a scheme to store small numbers in few bits

7

Compression 4/4

 For our purposes, codes should be prefix-free

– That is: no encoding of a symbol must be a prefix of an
encoding of some other symbol

– Assume the following code (which is not prefix-free)

A encoded by 1, B encoded by 11

now what does the sequence 1111 encode?

could be AAAA or ABA or BAA or AAB or BB

– For a prefix-free code, decoding is unambiguous

– And so are all the codes we will consider in this lecture

8

Elias encodings 1/2

 Elias-Gamma encoding, from 1975

– Write log2 x zeros, then 1, then x in binary

– Prefix-free, because the number of initial zeros tells us
exactly how many bits of the code come afterwards

– Code for x uses 2· log2 x + 1 bits … verify yourself !

– Let's look at the Elias-Gamma codes of 1, 2, 3, 4, 5, ...

9

*1923 New Jersey
†2001 Massachusetts

Elias encodings 2/2

 Elias-Delta encoding, also from 1975

– Write log2 x + 1 in Elias-Gamma, then x in binary

– Prefix-free, because the initial Elias-Gamma code (which is
itself prefix-free) tells us exactly how many bits of the code
come afterwards … again, verify this yourself !

– This requires log2 x + 2 log2 log2 x + O(1) bits … verify !

– Let's look at the Elias-Delta codes of 1, 2, 3, 4, 5, ...

10

Entropy 1/7

 Definition of entropy

– Intuitively: the information content of a message =
the optimal number of bits to encode that message

– Formally: defined for a discrete random variable X

Without loss of generality range of X = {1, ..., m}

Think of X as generating the symbols of the message

Then the entropy of X is written and defined as

H(X) = - Σi pi log2 pi where pi = Prob(X = i)

11

Entropy 2/7

 Shannon's famous source coding theorem (1948)

– Let X be a random variable with finite range

– For an arbitrary prefix-free (PF) encoding, let
L(x) be the length of the code for x ϵ range(X)

(1) For any PF encoding it holds: E L(X) ≥ H(X)

(2) There is a PF encoding with: E L(X) ≤ H(X) + 1

where E denotes the expectation

Remember: no code can be better than the
entropy, and there is always a code which is
almost as good

12

*1916 Michigan
†2001 Massachusetts

Entropy 3/7

 Central Lemma to prove the source coding theorem

– Denote by Li the length of the code for the i-th symbol, then

(1) Given a PF code with lengths Li  Σi 2-Li ≤ 1

(2) Given Li with Σi 2-Li ≤ 1  exists PF code with length Li

– Note: Σi 2-Li ≤ 1 is known as "Kraft's inequality"

13

Entropy 4/7

 Proof of central lemma, part (1)

Given a PF code with lengths Li  Σi 2-Li ≤ 1

– Consider the following random experiment:

Generate a random binary sequence, and pick each bit
independent from all other bits

Stop when you have a valid code, or when no more
code is possible … well-defined for PF codes only !

– Let Ci be the event that code i is generated

14

Entropy 5/7

 Proof of central lemma, part (2)

Given Li with Σi 2-Li ≤ 1  exists PF code with length Li

– Consider a complete binary tree of depth max Li

– Marks all left edges 0, and all right edges 1

– Consider the code lengths Li in sorted order, smallest first

– Then iterate: pick a path of length Li from the root, disjoint
from all previous path … this gives a PF code for symbol i

15

Entropy 6/7

 Proof of source coding theorem, part (1)

– For any PF encoding it holds: E L(X) ≥ H(X)

– By definition of expectation: E L(X) = Σi pi · Li (1)

– By Kraft's inequality: Σi 2-Li ≤ 1 (2)

– Using Lagrange, it can be shown that, under the
constraint (2), (1) is minimized for Li = log2 1/pi

Verify yourself … good exam preparation exercise !

16

Entropy 7/7

 Proof of source coding theorem, part (2)

– There is a PF encoding with: E L(X) ≤ H(X) + 1

– Let Li = log2 1/pi , then Σi 2Li ≤ 1

Note that rounding is necessary because the code length
must be an integer, and that we need to round upwards,
so that Kraft's inequality holds

– By the central lemma, part (2), there then exists a PF
code with code lengths Li

– By definition of expectation:

17

Entropy-optimal encodings 1/2

 Definition

– A PF code for X is entropy-optimal if

Li ≤ log2 1/pi + O(1)

where Li = code length for symbol i, and pi = Pr(X = i)

– Understand from previous slides:

Then E L(X) ≤ H(X) + O(1) … and there cannot be a
much better PF code for X, since always E L(X) ≥ H(X)

– If all positive integers can be encoded, such a code is
called universal

18

Entropy-optimal encodings 1/2

 Elias-Gamma is a universal code

– Recall: code length for Elias-Gamma is Li = 2 log2 i + 1

– For which probability distribution is this entropy-optimal?

– We need Li ≤ log2 1/pi + 1

– This suggests something like pi ≈ 1 / i2

– Let pi = 1 / i2 for i ≥ 2, and p1 such that Σi pi = 1

That is, numbers i ≥ 2 occur with probability 1 / i2

19

Golomb encoding 1/2

 A slightly more involved encoding from 1966

– Comes with a parameter M, called modulus

– Write positive integer x as q · M + r

– Where q = x div M and r = x mod M

– The code for x is then the concatenation of:

(1) the quotient q written in unary with 0s

(2) a single 1 (as a delimiter)

(3) the remainder r written in binary

20

Solomon Golomb
*1932 Maryland

Golomb encoding 1/2

 Analysis

– Golomb codes are optimal for gap-encoding inverted list

You should prove this yourself in Exercise 4.1 and 4.2

– However, the implementation of Golomb requires quite a
lot of "bit fiddling", which costs time in decompression

Implement and evaluate it yourself in Exercise 4.3

NOTE: we have prepared quite a lot of working code
for you already (for both Java and C++) so that this
exercise is not too much work … see also next slide

21

Variable-Byte Encoding

 A very simple scheme often used in practice

– Use whole bytes, in order to avoid the (computationally
expensive) bit fiddling needed for the previous schemes

– Use one bit of each byte to indicate, whether this is the
last byte in the current code or not

We have fully implemented VB encoding for you (in both
Java and C++), including timing, tests and everything

Use this as a template for your GolombEncoding code !

– VB is also used for UTF-8 encoding ... later lecture

22

References

 In the Raghavan/Manning/Schütze textbook
Section 5: Index compression

Section 5.3: Postings file compression ... (some codes only)

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Elias_gamma_coding

http://en.wikipedia.org/wiki/Elias_delta_coding

http://en.wikipedia.org/wiki/Golomb_coding

http://en.wikipedia.org/wiki/Variable-width_encoding

http://en.wikipedia.org/wiki/Source_coding_theorem

http://en.wikipedia.org/wiki/Kraft_inequality

23

