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Overview of this lecture

 Organizational

– Your results and experiences with ES#3 (List Intersection)

 Compression

– Motivation: saves space (obviously), but also query time

– Concrete schemes: Elias, Golomb, Variable-Byte

– Shannon's theorem: optimal compression = entropy

– Exercise Sheet 4: prove optimality of Golomb encoding 
for gap-encoded inverted lists + verify experimentally
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Experiences with ES#3 (list intersection)

 Summary / excerpts       last checked November 12, 15:00

– Gallop not hard to understand + exercise quite feasible

– Many of you spent most of their time on debugging

Don't worry, this will get better with practice !

– Surprised that the (theoretically optimal) Gallop is so slow
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Results for ES#3 (list intersection)

 Main observations + discussion

– Let R be the ratio between the two list lengths

– For R=2 (university german), simple is unbeatable

– For R=13 (university berlin), simple is still hard to beat

– For R=198 (university freiburg), gallop is faster

– Reason: gallop asymptotically faster than simple, but more 
complex code = larger constant factors in the running time
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Compression   1/4

 Motivation
– A search engine index can become very large

Understand: total number of index items = total size of
the text collection in words

– Index in memory:

Then compression saves memory (obviously)

Also note that an index might be to large to fit into 
memory without compression, and with compr. it does

Fitting in memory is good because reading from memory 
is (much) faster than reading from disk
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Compression   2/4

 Motivation
– Index on disk:

Then compression saves disk space (obviously)

But is also saves query time:

Reading an inverted list from disk takes a lot of time

Assume 50 MB / sec and an inverted list of size 50 MB

Then reading that list from disk takes 1 second

If we compress it to 10 MB, reading takes 0.2 second

We need to decompress it then, but even if that takes 
0.3 seconds, we have still gained a factor of two !
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Compression   3/4

 Compressing inverted lists

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– Numbers can become very large … so we need 4 bytes
to store each, for web search even more

– But we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– This is called gap encoding

– Works as long as we process the lists from left to right

– Now we have a sequence of mostly small numbers

– We need a scheme to store small numbers in few bits
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Compression   4/4

 For our purposes, codes should be prefix-free

– That is: no encoding of a symbol must be a prefix of an 
encoding of some other symbol

– Assume the following code   (which is not prefix-free)

A encoded by 1,  B encoded by 11

now what does the sequence 1111 encode?

could be AAAA or ABA or BAA or AAB or BB

– For a prefix-free code, decoding is unambiguous

– And so are all the codes we will consider in this lecture 
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Elias encodings   1/2

 Elias-Gamma encoding, from 1975

– Write log2 x zeros, then 1, then x in binary

– Prefix-free, because the number of initial zeros tells us 
exactly how many bits of the code come afterwards

– Code for x uses 2· log2 x + 1 bits … verify yourself !

– Let's look at the Elias-Gamma codes of 1, 2, 3, 4, 5, ... 
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Elias encodings   2/2

 Elias-Delta encoding, also from 1975

– Write log2 x + 1 in Elias-Gamma, then x in binary

– Prefix-free, because the initial Elias-Gamma code (which is 
itself prefix-free) tells us exactly how many bits of the code 
come afterwards … again, verify this yourself !

– This requires log2 x + 2 log2 log2 x + O(1) bits … verify !

– Let's look at the Elias-Delta codes of 1, 2, 3, 4, 5, ... 
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Entropy   1/7

 Definition of entropy

– Intuitively: the information content of a message = 
the optimal number of bits to encode that message

– Formally: defined for a discrete random variable X

Without loss of generality range of X = {1, ..., m}

Think of X as generating the symbols of the message

Then the entropy of X is written and defined as

H(X) = - Σi pi log2 pi where pi = Prob(X = i)
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Entropy   2/7

 Shannon's famous source coding theorem (1948)

– Let X be a random variable with finite range

– For an arbitrary prefix-free (PF) encoding, let
L(x) be the length of the code for x ϵ range(X)  

(1) For any PF encoding it holds:   E L(X) ≥ H(X)

(2) There is a PF encoding with:    E L(X) ≤ H(X) + 1

where E denotes the expectation

Remember: no code can be better than the
entropy, and there is always a code which is
almost as good
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Entropy   3/7

 Central Lemma to prove the source coding theorem

– Denote by Li the length of the code for the i-th symbol, then

(1)  Given a PF code with lengths Li  Σi 2-Li ≤ 1

(2)  Given Li with Σi 2-Li ≤ 1   exists PF code with length Li

– Note: Σi 2-Li ≤ 1 is known as "Kraft's inequality"
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Entropy   4/7

 Proof of central lemma, part (1)

Given a PF code with lengths Li  Σi 2-Li ≤ 1

– Consider the following random experiment:

Generate a random binary sequence, and pick each bit 
independent from all other bits

Stop when you have a valid code, or when no more
code is possible … well-defined for PF codes only !

– Let Ci be the event that code i is generated
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Entropy   5/7

 Proof of central lemma, part (2)

Given Li with Σi 2-Li ≤ 1   exists PF code with length Li

– Consider a complete binary tree of depth max Li

– Marks all left edges 0, and all right edges 1

– Consider the code lengths Li in sorted order, smallest first

– Then iterate: pick a path of length Li from the root, disjoint 
from all previous path … this gives a PF code for symbol i
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Entropy   6/7

 Proof of source coding theorem, part (1)

– For any PF encoding it holds:   E L(X) ≥ H(X)

– By definition of expectation: E L(X) = Σi pi · Li (1)

– By Kraft's inequality: Σi 2-Li ≤ 1 (2)

– Using Lagrange, it can be shown that, under the 
constraint (2), (1) is minimized for Li = log2 1/pi

Verify yourself … good exam preparation exercise !
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Entropy   7/7

 Proof of source coding theorem, part (2)

– There is a PF encoding with:    E L(X) ≤ H(X) + 1

– Let Li = log2 1/pi , then Σi 2Li ≤ 1

Note that rounding is necessary because the code length 
must be an integer, and that we need to round upwards, 
so that Kraft's inequality holds

– By the central lemma, part (2), there then exists a PF 
code with code lengths Li

– By definition of expectation:
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Entropy-optimal encodings   1/2  

 Definition

– A PF code for X is entropy-optimal if

Li ≤ log2 1/pi + O(1)

where Li = code length for symbol i, and pi = Pr(X = i)

– Understand from previous slides:

Then E L(X) ≤ H(X) + O(1) … and there cannot be a   
much better PF code for X, since always E L(X) ≥ H(X)

– If all positive integers can be encoded, such a code is 
called universal
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Entropy-optimal encodings   1/2 

 Elias-Gamma is a universal code

– Recall: code length for Elias-Gamma is Li = 2 log2 i + 1

– For which probability distribution is this entropy-optimal?

– We need Li ≤ log2 1/pi + 1 

– This suggests something like pi ≈ 1 / i2

– Let pi = 1 / i2 for i ≥ 2, and p1 such that Σi pi = 1

That is, numbers i ≥ 2 occur with probability 1 / i2
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Golomb encoding   1/2

 A slightly more involved encoding from 1966

– Comes with a parameter M, called modulus

– Write positive integer  x as  q · M + r

– Where  q = x div M and  r = x mod M

– The code for x is then the concatenation of:

(1) the quotient q written in unary with 0s

(2) a single 1 (as a delimiter)

(3) the remainder r written in binary
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Golomb encoding   1/2

 Analysis

– Golomb codes are optimal for gap-encoding inverted list

You should prove this yourself in Exercise 4.1 and 4.2

– However, the implementation of Golomb requires quite a 
lot of "bit fiddling", which costs time in decompression

Implement and evaluate it yourself in Exercise 4.3

NOTE: we have prepared quite a lot of working code
for you already (for both Java and C++) so that this 
exercise is not too much work … see also next slide
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Variable-Byte Encoding

 A very simple scheme often used in practice

– Use whole bytes, in order to avoid the (computationally 
expensive) bit fiddling needed for the previous schemes

– Use one bit of each byte to indicate, whether this is the 
last byte in the current code or not

We have fully implemented VB encoding for you (in both 
Java and C++), including timing, tests and everything

Use this as a template for your GolombEncoding code !

– VB is also used for UTF-8 encoding ... later lecture
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