
Information Retrieval
WS 2013 / 2014

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 2, Tuesday October 29th, 2013
(Ranking, tf.idf, BM25, Vector Space Model, Evaluation)

Overview of this lecture

 Organizational
– Your experiences with Ex. Sheet 1 (inverted index)

 How to rank results
– Basic principle / scores

– Formulas: tf.idf and BM25

– Vector Space Model

– Quality evaluation: precision, recall, …, nDCG@k

Exercise Sheet #2: compare three ranking formulas
with respect to their nDCG@5 for query of your choice

2

Experiences with ES1 (inverted index)

 Summary / excerpts last checked October 29, 15:00

– Liked the style of the lecture / exercises

– Heard stuff about SVN etc. for the 100th time

– No major problems for most, good exercise for starters

– Some overhead for setting up the environment

– Easy to overlook the implementation note in .TIP file

– The usual complaints about the style checker

Tabs vs. spaces, how to place the { … }

– Put slides and exercise sheet in the SVN, too

Not so easy as it sounds, but I try to find a way …

– "Unfortunately couldn't finish, but it was fun."
3

Ranking 1/4

 Motivation

– Queries often return many hits

– Typically more than one wants to (or even can) look at

For web search: often millions of documents

But even for less hits, a proper ranking is key to usability,
recall the Broccoli demo from Lecture 1

– So we want to have the most "relevant" hits first

– Problem: how to measure what is how "relevant"

4

Ranking 2/4

 Basic Idea

– In the inverted lists, for each doc id also have a score

uni 17 0.5, 53 0.2, 97 0.3, 127 0.8

freiburg 23 0.1, 34 0.8, 53 0.1, 127 0.7

– When intersecting lists aggregate (here: add) the scores

uni freiburg 53 0.3, 127 1.5

– Then sort the result by score

uni freiburg 127 1.5, 53 0.3

– The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also
contain more information, e.g. the position of a word

5

Ranking 3/4

 Generalization

– We can do the same thing with computing the union

uni 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

UNION 17 0.5 , 23 0.1 , 34 0.8 , 53 0.3 , 97 0.3 , 127 1.5

SORTED 127 1.5 , 34 0.8 , 17 0.5 , 53 0.3 , 97 0.3 , 23 0.1

– Note: documents which contain only some (or one) of the words
can be ranked before documents containing all of the words

provided the individual scores are high enough

– This is also called and-ish retrieval … like AND, but not exactly

For ES2 you can continue to use intersection
6

Ranking 4/4

 Getting the top-k results

– A full sort takes time Θ(n · log n), where n = #documents

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest
elements, for a given k

This can be computed in time Θ(n + k · log k)

k rounds of HeapSort yield time Θ(n + k · log n)

– For constant k these are both Θ(n)

– In C++ there is std::sort and std::partial_sort

– In Java there is Collections.sort but no partial sort method

For ES2, you can but don't have to use partial sort
7

Scores 1/8

 How to compute meaningful scores

– Let S1, S2, S3, … be the score sums of the documents
D1, D2, D3, … for a given keyword query Q

– GOAL: Si should reflect the relevance of Di for Q

in particular: Si > Sj Di more relevant for Q than Dj

– Obviously a very hard problem

In particular, it is often less than clear what is the
search request behind a given query

For example: freiburg doctor

– But it has to be done anyway !

8

Scores 2/8

 One important factor: tf = term frequency

tf of a word w in a doc D = how often w occurs in D

– Problem with mere tf scores: some words are frequent
in many documents, regardless of content

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

But the tf score for "of" should not count that much
for relevance

9

Scores 3/8

 Another important factor: df = document frequency

df of a word w = the number of docs containing w

– For example … for simplicity, numbers will be powers of 2

dfuniversity = 16.384 , dfof = 524.288 , dffreiburg = 1.024

– Intuitively, words with a large df should not count as much;
thus consider the inverse document frequency

idf = log2 (N / df) N = total number of documents

– For the example df scores above and N = 1.048.576 = 220

idfuniversity = 6 , idfof = 1, idffreiburg = 10

Understand: without the log2 , small differences in df would
have too much of an effect ; why exactly log2 later slide

10

Scores 4/8

 Combining the two: tf.idf = tf · idf = tf · log2 (N / df)

– Reconsider our earlier tf only example

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123 26 , …

– Now combined with idf scores from previous slide

university … , 57 30 , … … … , 123 12 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 30 , … … … , 123 10 , …

SCORE SUM … , 57 74 , … … … , 123 45 , …

11

Scores 5/8

 Problems with tf.idf in practice

– The idf part is fine, but the tf part has several problems:

– Let w be a word, and D1 and D2 be two documents

– Problem 1 (example)

If D1 is longer than D2, it will tend to have a higher tf for w
already because it's longer, not because it's more "about" w

– Problem 2 (example)

If D1 and D2 have the same length, and the tf of w in D1 is
twice the tf of w in D2

… then it is reasonable to assume that D1 is more "about" w
than D2, but just a little more, and not twice more

12

Scores 6/8

 BM25 = Best Match 25, Okapi = an IR system

– This tf.idf style formula has consistently outperformed
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf)

tf = term frequency, DL = document length, AVDL =
average document length

Standard setting for BM25: k = 1.75 and b = 0.75

Binary: k = 0, b = 0; Normal tf.idf: k = ∞, b = 0

– There is "theory" behind this formula ... see references

– Next slide: simple reason why the formula makes sense

13

Scores 7/8

 Why BM25 makes sense

– Start with the simple formula tf · idf

– Replace tf by tf* = tf · (k + 1) / (k + tf)

tf* = 0 if and only if tf = 0

tf* increases as tf increases

tf* k + 1 as tf infinity

– Normalize by the length of the document

full normalization: alpha = DL / AVDL

some normalization: alpha = (1 – b) + b · DL / AVDL

replace tf* by tf* / alpha

14

Scores 8/8

 Implementation advice

– The entries in the inverted lists are now elements of a class
Posting, each holding a doc id and a score

Map<String, Array<Posting>> invertedLists;

– During parsing, compute only basic tf: when a document
contains a word multiple times, simply add 1 to the score

– After the parsing, the length of each inverted list is exactly
the df for that word, which also gives you the idf then

The final tf.idf / BM25 scores can then be obtained by
another pass over each of the inverted lists

See the TIP files for ES2 linked on the Wiki

15

Vector Space Model 1/4

 Basic Idea

– View documents (and queries) as vectors in a vector space

– Each dimension corresponds to a word from the vocabulary

– Entries can be according to any of our scoring formulas

– Here is an example

Document 1: university of freiburg
Document 2: university of karlsruhe
Document 3: freiburg cathedral

16

Vector Space Model 2/4

 Similarity between two documents

or between a document and a query

– Cosine similarity: sim(d1, d2) = cos angle(d1, d2)

This is 1 if d1 ~ d2 , and 0 if no word in common

Advantage: favorable properties for mathematic analysis

– Dot product: d1 ● d2 = sum of products of components

Advantage: easy to compute efficiently ... later slide

– From linear algebra: d1 ● d2 = |d1| · |d2| · cos angle(d1, d2)

– Therefore, if the vectors are length normalized (|·| = 1) then

dot product = cosine similarity

17

Vector Space Model 3/4

 Computing the dot product similarity

… of a query to all documents

– Mathematically, this is just a multiplication of the term-
document matrix A with the query q

– The straightforward algorithm needs time ϴ(m · n),
where m = total num. of words, n = num. of documents

– However: A is a very sparse matrix, and q is a very
sparse vector, where sparse = most entries are zero

18

Vector Space Model 4/4

 Computing the dot product similarity

– Observation 1: Inverted lists are nothing else, but a
representation of the non-zero entries of the term-
document matrix

– Observation 2: Computing the dot product of a query Q
with every document is nothing else but:

Taking the union of the inverted lists of all words in Q
with a non-zero entry and adding up the scores accordingly

19

Evaluation 1/6

 How to evaluate the quality of a ranking

– Variant 1: For each query, identify the ground truth
= all relevant documents for that query

This is a very time-consuming job, especially for large
document collections. But once done, easy + quick re-
evaluation after any changes / tuning to your system

For big data, use services like Amazon's Mechanical Turk

– Variant 2: For each query, manually inspect the result
list for relevant documents

For ES2, just do a manual inspection of the top-5 hits

– Variant 3: In competitions, pooling is sometimes used
= manually evaluate only the union of the top-k hits
from all participating systems, where e.g. k = 100

20

Evaluation 2/6

 Precision and Recall, ranking-unaware measures

– Let tp = the number of relevant
docs in the result list (true positives)

– Let fp = the number of non-relevant
docs in the result list (false positives)

– Let fn = the number of relevant docs
missing from the result list (false negatives)

– Then precision is defined as tp / (tp + fp)

and recall is defined as tp / (tp + fn)

– F-measure = harmonic mean of the two

21

Evaluation 3/6

 Precision and Recall, ranking-aware measures

– Precision@k = the precision among the first k docs

– Precision@R = the precision among the first R docs

where R is the number of relevant documents

– Let k1 < ... < kR be the ranks of the relevant docs in the
result list (rank missing docs randomly or worst-case)

Average precision = average of P@k1, ..., P@kR

– For a set of queries, the MAP = mean average precision
is the average (over all queries) of the average precisions

22

Evaluation 4/6

 Precision-recall curve

– Average precision is just a single number

– For a complete picture of the quality of the ranking, plot
a precision-recall curve

– If the x-axis is normalized, these can also be averaged
over several queries

23

Evaluation 5/6

 More refined measures

– Sometimes relevance comes in more than one shade, e.g.

0 = not relevant, 1 = somewhat rel, 2 = very relevant

– Then a ranking that puts the very relevant docs at the top
should be preferred

Cumulative gain CG@k = Σi=1..k reli
Discounted CG DCG@k = rel1 + Σi=2..k reli / log2 i

– Problem: CG and DCG are larger for larger result lists

– Solution: normalize by maximally achievable value

iDCG@k = value of DCG@k for ideal ranking

Normalized DCG nDCG@k = DCG@k / iDCG@k

24

Evaluation 6/6

 Normalized discounted cumulative gain, example

25

References

 In the Raghavan/Manning/Schütze textbook
Section 6: Scoring, term weighting, vector space model

 Relevant Papers
The Probabilistic Relevance Framework: BM25 and Beyond
S. Robertson and H. Zaragoza FnTIR 2009, 333 – 389

 TREC conference (benchmarks)
http://trec.nist.gov/tracks.html

 Relevant Wikipedia articles
http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Discounted_cumulative_gain
http://en.wikipedia.org/wiki/Partial_sorting

26

