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Overview of this lecture

 Organizational
– Your experiences with Ex. Sheet 1 (inverted index)

 How to rank results
– Basic principle / scores

– Formulas: tf.idf and BM25

– Vector Space Model

– Quality evaluation: precision, recall, …, nDCG@k

Exercise Sheet #2:  compare three ranking formulas
with respect to their nDCG@5 for query of your choice
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Experiences with ES1 (inverted index)

 Summary / excerpts       last checked October 29, 15:00

– Liked the style of the lecture / exercises

– Heard stuff about SVN etc. for the 100th time

– No major problems for most, good exercise for starters

– Some overhead for setting up the environment

– Easy to overlook the implementation note in .TIP file

– The usual complaints about the style checker

Tabs vs. spaces, how to place the { … }

– Put slides and exercise sheet in the SVN, too

Not so easy as it sounds, but I try to find a way …

– "Unfortunately couldn't finish, but it was fun."
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Ranking   1/4

 Motivation

– Queries often return many hits

– Typically more than one wants to (or even can) look at

For web search: often millions of documents

But even for less hits, a proper ranking is key to usability, 
recall the Broccoli demo from Lecture 1

– So we want to have the most "relevant" hits first

– Problem: how to measure what is how "relevant"
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Ranking   2/4

 Basic Idea

– In the inverted lists, for each doc id also have a score

uni 17 0.5,  53 0.2,  97 0.3,  127 0.8

freiburg 23 0.1,  34 0.8,  53 0.1,  127 0.7

– When intersecting lists aggregate (here: add) the scores

uni freiburg 53 0.3, 127 1.5

– Then sort the result by score

uni freiburg 127 1.5,  53 0.3

– The entries in the list are referred to as postings

Above, it's only doc id and score, but a posting can also 
contain more information, e.g. the position of a word

5



Ranking   3/4

 Generalization

– We can do the same thing with computing the union

uni 17 0.5 , 53 0.2 , 97 0.3 , 127 0.8

freiburg 23 0.1 , 34 0.8 , 53 0.1 , 127 0.7

UNION 17 0.5 , 23 0.1 , 34 0.8 , 53 0.3 , 97 0.3 , 127 1.5

SORTED 127 1.5 , 34 0.8 , 17 0.5 , 53 0.3 , 97 0.3 , 23 0.1

– Note: documents which contain only some (or one) of the words 
can be ranked before documents containing all of the words

provided the individual scores are high enough

– This is also called and-ish retrieval … like AND, but not exactly

For ES2 you can continue to use intersection
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Ranking   4/4

 Getting the top-k results

– A full sort takes time Θ(n · log n), where n = #documents

– Typically only the top-k hits need to be displayed

– Then a partial sort is sufficient: get the k largest 
elements, for a given k

This can be computed in time Θ(n + k · log k)

k rounds of HeapSort yield time Θ(n + k · log n)

– For constant k these are both Θ(n)

– In C++ there is std::sort and std::partial_sort

– In Java there is Collections.sort but no partial sort method

For ES2, you can but don't have to use partial sort
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Scores   1/8

 How to compute meaningful scores

– Let S1, S2, S3, … be the score sums of the documents 
D1, D2, D3, … for a given keyword query Q

– GOAL: Si should reflect the relevance of Di for Q

in particular: Si > Sj  Di more relevant for Q than Dj

– Obviously a very hard problem

In particular, it is often less than clear what is the 
search request behind a given query

For example: freiburg doctor

– But it has to be done anyway !
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Scores   2/8

 One important factor: tf = term frequency

tf of a word w in a doc D = how often w occurs in D

– Problem with mere tf scores: some words are frequent 
in many documents, regardless of content

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123  26 , …

But the tf score for "of" should not count that much
for relevance
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Scores   3/8

 Another important factor: df = document frequency

df of a word w = the number of docs containing w

– For example    … for simplicity, numbers will be powers of 2

dfuniversity = 16.384 , dfof = 524.288 , dffreiburg = 1.024

– Intuitively, words with a large df should not count as much; 
thus consider the inverse document frequency

idf = log2 (N / df)   N = total number of documents

– For the example df scores above and N = 1.048.576 = 220

idfuniversity = 6 , idfof = 1, idffreiburg = 10  

Understand: without the log2 , small differences in df would 
have too much of an effect ; why exactly log2  later slide
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Scores   4/8

 Combining the two:  tf.idf = tf · idf = tf · log2 (N / df)

– Reconsider our earlier tf only example

university … , 57 5 , … … … , 123 2 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 3 , … … … , 123 1 , …

SCORE SUM … , 57 22 , … … … , 123  26 , …

– Now combined with idf scores from previous slide

university … , 57 30 , … … … , 123 12 , …
of … , 57 14 , … … … , 123 23 , …
freiburg … , 57 30 , … … … , 123 10 , …

SCORE SUM … , 57 74 , … … … , 123  45 , …
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Scores   5/8

 Problems with tf.idf in practice

– The idf part is fine, but the tf part has several problems:

– Let w be a word, and D1 and D2 be two documents

– Problem 1 (example)

If D1 is longer than D2, it will tend to have a higher tf for w
already because it's longer, not because it's more "about" w

– Problem 2 (example)

If D1 and D2 have the same length, and the tf of w in D1 is 
twice the tf of w in D2

… then it is reasonable to assume that D1 is more "about" w
than D2, but just a little more, and not twice more
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Scores   6/8

 BM25 = Best Match 25, Okapi = an IR system

– This tf.idf style formula has consistently outperformed 
other formulas in standard benchmarks over the years

BM25 score = tf* · log2 (N / df), where

tf* = tf · (k + 1) / (k  · (1 – b + b · DL / AVDL) + tf)

tf = term frequency, DL = document length, AVDL = 
average document length

Standard setting for BM25:  k = 1.75 and b = 0.75

Binary: k = 0, b = 0;  Normal tf.idf: k = ∞, b = 0 

– There is "theory" behind this formula ... see references

– Next slide: simple reason why the formula makes sense
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Scores   7/8

 Why BM25 makes sense

– Start with the simple formula tf · idf

– Replace tf by tf* = tf · (k + 1) / (k + tf)

tf* = 0 if and only if tf = 0

tf* increases as tf increases

tf*  k + 1 as tf  infinity

– Normalize by the length of the document

full normalization:  alpha = DL / AVDL

some normalization: alpha = (1 – b) + b · DL / AVDL

replace tf* by tf* / alpha
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Scores   8/8

 Implementation advice

– The entries in the inverted lists are now elements of a class 
Posting, each holding a doc id and a score

Map<String, Array<Posting>> invertedLists;

– During parsing, compute only basic tf: when a document 
contains a word multiple times, simply add 1 to the score 

– After the parsing, the length of each inverted list is exactly 
the df for that word, which also gives you the idf then

The final tf.idf / BM25 scores can then be obtained by 
another pass over each of the inverted lists

See the TIP files for ES2 linked on the Wiki
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Vector Space Model   1/4

 Basic Idea

– View documents (and queries) as vectors in a vector space

– Each dimension corresponds to a word from the vocabulary

– Entries can be according to any of our scoring formulas

– Here is an example

Document 1: university of freiburg
Document 2: university of karlsruhe
Document 3: freiburg cathedral 
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Vector Space Model   2/4

 Similarity between two documents

or between a document and a query

– Cosine similarity: sim(d1, d2) = cos angle(d1, d2)

This is 1 if d1 ~ d2 , and 0 if no word in common

Advantage:  favorable properties for mathematic analysis

– Dot product:  d1 ● d2 = sum of products of components

Advantage:  easy to compute efficiently ... later slide

– From linear algebra:  d1 ● d2 = |d1| · |d2| · cos angle(d1, d2)

– Therefore, if the vectors are length normalized (|·| = 1) then

dot product = cosine similarity 
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Vector Space Model   3/4

 Computing the dot product similarity

… of a query to all documents

– Mathematically, this is just a multiplication of the term-
document matrix A with the query q

– The straightforward algorithm needs time ϴ(m · n), 
where m = total num. of words, n = num. of documents

– However: A is a very sparse matrix, and q is a very 
sparse vector, where sparse = most entries are zero 
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Vector Space Model   4/4

 Computing the dot product similarity

– Observation 1: Inverted lists are nothing else, but a 
representation of the non-zero entries of the term-
document matrix 

– Observation 2: Computing the dot product of a query Q
with every document is nothing else but:

Taking the union of the inverted lists of all words in Q
with a non-zero entry and adding up the scores accordingly
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Evaluation   1/6

 How to evaluate the quality of a ranking

– Variant 1: For each query, identify the ground truth
= all relevant documents for that query

This is a very time-consuming job, especially for large 
document collections. But once done, easy + quick re-
evaluation after any changes / tuning to your system

For big data, use services like Amazon's Mechanical Turk

– Variant 2: For each query, manually inspect the result 
list for relevant documents

For ES2, just do a manual inspection of the top-5 hits

– Variant 3: In competitions, pooling is sometimes used 
= manually evaluate only the union of the top-k hits 
from all participating systems, where e.g. k = 100
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Evaluation   2/6

 Precision and Recall, ranking-unaware measures

– Let tp = the number of relevant
docs in the result list (true positives)

– Let fp = the number of non-relevant
docs in the result list (false positives)

– Let fn = the number of relevant docs
missing from the result list (false negatives)

– Then precision is defined as tp / (tp + fp)

and recall is defined as tp / (tp + fn)

– F-measure = harmonic mean of the two
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Evaluation   3/6

 Precision and Recall, ranking-aware measures

– Precision@k = the precision among the first k docs

– Precision@R = the precision among the first R docs

where R is the number of relevant documents

– Let k1 < ... < kR be the ranks of the relevant docs in the 
result list     (rank missing docs randomly or worst-case)

Average precision = average of P@k1, ..., P@kR

– For a set of queries, the MAP = mean average precision 
is the average (over all queries) of the average precisions
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Evaluation   4/6

 Precision-recall curve

– Average precision is just a single number

– For a complete picture of the quality of the ranking, plot 
a precision-recall curve

– If the x-axis is normalized, these can also be averaged 
over several queries
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Evaluation   5/6

 More refined measures

– Sometimes relevance comes in more than one shade, e.g.

0 = not relevant, 1 = somewhat rel, 2 = very relevant

– Then a ranking that puts the very relevant docs at the top 
should be preferred

Cumulative gain  CG@k = Σi=1..k reli
Discounted CG    DCG@k = rel1 + Σi=2..k reli / log2 i

– Problem:  CG and DCG are larger for larger result lists

– Solution: normalize by maximally achievable value

iDCG@k = value of DCG@k for ideal ranking

Normalized DCG  nDCG@k = DCG@k / iDCG@k
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 Normalized discounted cumulative gain, example
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